Show simple item record

dc.contributor.authorBen Houidi, Moez
dc.contributor.authorHespel, Camille
dc.contributor.authorBardi, Michele
dc.contributor.authorNilaphai, Ob
dc.contributor.authorMalbec, Louis Marie
dc.contributor.authorSotton, Julien
dc.contributor.authorBellenoue, Marc
dc.contributor.authorStrozzi, Camille
dc.contributor.authorAjrouche, Hugo
dc.contributor.authorFoucher, Fabrice
dc.contributor.authorMoreau, Bruno
dc.contributor.authorRousselle, Christine
dc.contributor.authorBruneaux, Gilles
dc.date.accessioned2020-07-26T13:33:21Z
dc.date.available2020-07-26T13:33:21Z
dc.date.issued2020-06-05
dc.date.submitted2019-09-13
dc.identifier.citationBen Houidi, M., Hespel, C., Bardi, M., Nilaphai, O., Malbec, L.-M., Sotton, J., … Bruneaux, G. (2020). Characterization of the ECN spray A in different facilities. Part 1: boundary conditions characterization. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 75, 35. doi:10.2516/ogst/2020023
dc.identifier.issn1953-8189
dc.identifier.issn1294-4475
dc.identifier.doi10.2516/ogst/2020023
dc.identifier.urihttp://hdl.handle.net/10754/664409
dc.description.abstractThe Engine Combustion Network (ECN) community has greatly contributed to improve the fundamental understanding of spray atomization and combustion at conditions relevant to internal combustion engines. In this context, standardized spray experiments have been defined to facilitate the comparison of experimental and simulation studies performed in different facilities and with different models. This operating mode promotes collaborations among research groups and accelerates the advancement of research on spray. In efforts to improve the comparability of the ECN spray A experiments, it is of high importance to review the boundary conditions of different devices used in the community. This work is issued from the collaboration in the ECN France project, where two new experimental facilities from PPRIME (Poitiers) and PRISME (Orleans) institutes are validated to perform spray A experiments. The two facilities, based on Rapid Compression Machine (RCM) design, have been investigated to characterize their boundary conditions (e.g., flow velocity as well as fuel and gas temperatures). A set of standardized spray experiments were performed to compare their results with those obtained in other facilities, in particular the Constant Volume Pre-burn (CVP) vessel at IFPEN. It is noteworthy that it is the first time that RCM type facilities are used in such a way within the ECN. This paper (part 1) focuses on the facilities description and the fine characterization of their boundary conditions. A further paper (part 2) will present the results obtained with the same facilities performing ECN standard spray A characterizations. The reported review of thermocouple thermometry highlights that it is necessary to use thin-wires and bare-bead junction as small as possible. This would help to measure the temperature fluctuations with a minimal need for error corrections, which are highly dependent on the proper estimation of the velocity through the junction, and therefore it may introduce important uncertainties. Temperature heterogeneities are observed in all spray A devices. The standard deviation of the temperature distribution at the time of injection is approximately 5%. We report time-resolved temperature measurement from PPRIME RCM, performed in the near nozzle area during the injection. In inert condition, colder gases from the boundary layer are entrained toward the mixing area of the spray causing a further deviation from the target temperature. This emphasizes the importance of the temperature in the boundary (wall) layer. In reacting condition, the temperature of these entrained gases increases by the effect of the increased pressure, as the RCM has a relatively small volume. Generally, the velocity and turbulence levels are an order of magnitude higher in RCM and constant pressure flow compared to CVP vessels. The boundary characterization presented here will be the base for discussing spray behavior in the part 2 of this paper.
dc.publisherEDP Sciences
dc.relation.urlhttps://ogst.ifpenergiesnouvelles.fr/10.2516/ogst/2020023
dc.relation.urlhttps://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/2020/01/ogst190284.pdf
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleCharacterization of the ECN spray A in different facilities. Part 1: Boundary conditions characterization
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalOil and Gas Science and Technology
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionInstitut PPRIME, CNRS, ISAE-ENSMA, Université de Poitiers, Département Fluide Thermique Combustion, BP 40109, Teleport 2, 1 avenue Clement Ader, 86962 Futuroscope Chasseneuil-du-Poitou Cedex, France
dc.contributor.institutionUniv. Orléans, INSA-CVL, PRISME, EA 4229, 45072 Orléans, France
dc.contributor.institutionIFP Energies nouvelles, 1 et 4 avenue de Bois Préau, 92852 Rueil-Malmaison, France
dc.identifier.volume75
dc.identifier.pages35
kaust.personBen Houidi, Moez
dc.date.accepted2020-03-31
dc.identifier.eid2-s2.0-85088146116
refterms.dateFOA2020-07-26T13:35:16Z
dc.date.published-online2020-06-05
dc.date.published-print2020


Files in this item

Thumbnail
Name:
characterization.pdf
Size:
7.762Mb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.