Nanoscopic Characterization of Selectin-Ligand Interactions During the Initial Step of The Hematopoietic Stem Cell Homing Using Microfluidics-Based 3D Super-Resolution Fluorescence Imaging
Type
ThesisAuthors
Ciocanaru, Ioana Andreea
Advisors
Habuchi, Satoshi
Committee members
Liberale, Carlo
Lauersen, Kyle J.
Program
BioscienceDate
2020-05Permanent link to this record
http://hdl.handle.net/10754/664408
Metadata
Show full item recordAbstract
Nanoscopic spatial reorganization of selectin ligands, CD44 and PSGL-1, during the initial step of hematopoietic stem/progenitor cell (HSPC) homing, tethering and rolling of migrating cells over E-selectins, has been recently reported. However, the exact spatial distribution of these ligands and their spatial reorganization during the cell rolling on E-selectins are still an open question. The spatiotemporal characterization at the nanoscale level requires high resolution imaging methods. In this study, I quantitatively characterize nanoscopic spatiotemporal behavior of the selectin ligands on the migrating cells to understanding the molecular mechanism of the cell rolling at the nanoscale level by means of a microfluidics-based 3D super-resolution fluorescence microscopy technique. The obtained results suggest that PSGL-1 on the cell shows significant change in the axial distribution on the cell during the cell rolling on E-selectin whereas the spatial distribution of CD44 along the axial direction is not affected significantly by the cell rolling. These findings indicate that each selectin ligand has a distinct contribution to the initial step of the HSPC homing because of their distinct spatial localizations on the cells that regulate at least partly the accessibility of these ligands to the surface E-selectin.Citation
Ciocanaru, I. A. (2020). Nanoscopic Characterization of Selectin-Ligand Interactions During the Initial Step of The Hematopoietic Stem Cell Homing Using Microfluidics-Based 3D Super-Resolution Fluorescence Imaging. KAUST Research Repository. https://doi.org/10.25781/KAUST-9HR2Dae974a485f413a2113503eed53cd6c53
10.25781/KAUST-9HR2D