Show simple item record

dc.contributor.authorCha, Hyojung
dc.contributor.authorZheng, Yizhen
dc.contributor.authorDong, Yifan
dc.contributor.authorLee, Hyun Hwi
dc.contributor.authorWu, Jiaying
dc.contributor.authorBristow, Helen
dc.contributor.authorZhang, Jiangbin
dc.contributor.authorLee, Harrison Ka Hin
dc.contributor.authorTsoi, Wing C.
dc.contributor.authorBakulin, Artem A.
dc.contributor.authorMcCulloch, Iain
dc.contributor.authorDurrant, James R.
dc.date.accessioned2020-07-26T08:29:20Z
dc.date.available2020-07-26T08:29:20Z
dc.date.issued2020-07-21
dc.date.submitted2020-04-01
dc.identifier.citationCha, H., Zheng, Y., Dong, Y., Lee, H. H., Wu, J., Bristow, H., … Durrant, J. R. (2020). Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. Advanced Energy Materials, 2001149. doi:10.1002/aenm.202001149
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.doi10.1002/aenm.202001149
dc.identifier.doi10.1002/aenm.202070158
dc.identifier.urihttp://hdl.handle.net/10754/664397
dc.description.abstractHerein the morphology and exciton/charge carrier dynamics in bulk heterojunctions (BHJs) of the donor polymer PTQ10 and molecular acceptor IDIC are investigated. PTQ10:IDIC BHJs are shown to be particularly promising for low cost organic solar cells (OSCs). It is found that both PTQ10 and IDIC show remarkably high crystallinity in optimized BHJs, with GIWAXS data indicating pi-pi stacking coherence lengths of up to 8 nm. Exciton-exciton annihilation studies indicate long exciton diffusion lengths for both neat materials (19 nm for PTQ10 and 9.5 nm for IDIC), enabling efficient exciton separation with half lives of 1 and 3 ps, despite the high degree of phase segregation in this blend. Transient absorption data indicate exciton separation leads to the formation of two spectrally distinct species, assigned to interfacial charge transfer (CT) states and separated charges. CT state decay is correlated with the appearance of additional separate charges, indicating relatively efficient CT state dissociation, attributed to the high crystallinity of this blend. The results emphasize the potential for high material crystallinity to enhance charge separation and collection in OSCs, but also that long exciton diffusion lengths are likely to be essential for efficient exciton separation in such high crystallinity devices.
dc.description.sponsorshipThe authors gratefully acknowledge funding from supported by KAUST under the Grant Agreement number OSR-2015-CRG4-2572 and the EPSRC/GCRF project SUNRISE (EP/P032591/1). H.C. acknowledges Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A3A03011245). J.Z. acknowledges a Ph.D. scholarship from China Scholarship Council (201503170255). H. H. Lee acknowledges SRC program through National Research Foundation of Korea (NRF) funded by the Korean government (NRF-2015R1A5A1009962). A.A.B is a Royal Society University Research Fellow.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202001149
dc.rightsArchived with thanks to Advanced Energy Materials
dc.titleExciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells
dc.typeArticle
dc.contributor.departmentChemical Science Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Energy Materials
dc.rights.embargodate2021-07-22
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Chemistry and Centre for Plastic ElectronicsImperial College London London W12 0BZ UK
dc.contributor.institutionPohang Accelerator Laboratory (PAL)Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
dc.contributor.institutionCavendish LaboratoryUniversity of CambridgeJJ Thomson Avenue Cambridge CB3 0HE UK
dc.contributor.institutionSPECIFIC IKCCollege of EngineeringSwansea University Bay Campus, Fabian Way Swansea Wales SA1 8EN UK
dc.contributor.institutionDepartment of ChemistryChemistry Research LaboratoryUniversity of Oxford Oxford OX1 3TA UK
dc.identifier.pages2001149
kaust.personMcCulloch, Iain
kaust.grant.numberOSR-2015-CRG4-2572
dc.date.accepted2020-06-25
refterms.dateFOA2020-08-09T05:41:16Z
kaust.acknowledged.supportUnitOSR
dc.date.published-online2020-07-21
dc.date.published-print2020-10


Files in this item

Thumbnail
Name:
Manuscript_aenm.202001149.pdf
Size:
786.3Kb
Format:
PDF
Description:
Accepted manuscript
Thumbnail
Name:
Split_aenm.202001149_R1.pdf
Size:
1.739Mb
Format:
PDF
Description:
Accepted manuscript
Thumbnail
Name:
Supporting Information_aenm.202001149 - 복사본.pdf
Size:
1017.Kb
Format:
PDF
Description:
supporting Information

This item appears in the following Collection(s)

Show simple item record