Show simple item record

dc.contributor.advisorNunes, Suzana Pereira
dc.contributor.authorAlhazmi, Banan O.
dc.date.accessioned2020-07-23T09:24:01Z
dc.date.available2021-07-26T00:00:00Z
dc.date.issued2020-07
dc.identifier.citationAlhazmi, B. O. (2020). Interfacially Polymerized Thin-Film Composite Membranes Based on Biophenolic Material for Liquid Separation. KAUST Research Repository. https://doi.org/10.25781/KAUST-T00WM
dc.identifier.doi10.25781/KAUST-T00WM
dc.identifier.urihttp://hdl.handle.net/10754/664380
dc.description.abstractAbstract: The aim of this research is to fabricate thin-film composite (TFC) membranes using a synthetic derivative of plant-based phenols, as a non-toxic building block for interfacial polymerization. Classical interfacially polymerized composite membranes are heavily integrated in reverse osmosis and nanofiltration applications for water and wastewater treatment and most recently for chemical and pharmaceutical industries. Implementing sustainable practices in membrane fabrication by exploiting greener alternatives to conventional chemicals can directly reduce hazardous waste and ultimately lower the global energy and environmental burdens. In this study, allyl gallate was chosen as a monomer to form selective thin films by the interfacial reaction with trimesoyl chloride on top of an asymmetrically porous polyacrylonitrile support. The advantage of the unreacted allyl groups is that they can be in the future used as post-functionalization sites. The highly volatile organic phase solvents were additionally replaced by an isoparaffinic fluid, commercially known as Isopar G. The chemical composition and morphology of the membrane was evaluated using solid-state 13C NMR, FTIR, and SEM. The optimized membrane resulted in a permeance of 12±2 and 48±14 L m-2 h-1 bar-1 for respectively pure water and methanol with a rejection in the nanofiltration range.
dc.language.isoen
dc.subjectMembrane
dc.subjectInterfacial Polymerization
dc.subjectGreen Chemistry
dc.subjectBiophenol
dc.subjectPost Synthesis
dc.titleInterfacially Polymerized Thin-Film Composite Membranes Based on Biophenolic Material for Liquid Separation
dc.typeThesis
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.rights.embargodate2021-07-26
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberHadjichristidis, Nikos
dc.contributor.committeememberSzekely, Gyorgy
thesis.degree.disciplineChemical Engineering
thesis.degree.nameMaster of Science
dc.rights.accessrightsAt the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2021-07-26.
kaust.request.doiyes


Files in this item

Thumbnail
Name:
BananAlhazmiThesis.pdf
Size:
8.165Mb
Format:
PDF
Description:
Banan Alhazmi - Final Thesis Paper

This item appears in the following Collection(s)

Show simple item record