• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Fundamental Studies of Soot Formation and Diagnostic Development in Nonpremixed Combustion Environments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dissertation_v4ab.pdf
    Size:
    6.060Mb
    Format:
    PDF
    Description:
    Anthony Bennett - Final Thesis
    Download
    View more filesView fewer files
    Type
    Dissertation
    Authors
    Bennett, Anthony cc
    Advisors
    Roberts, William L. cc
    Committee members
    Sarathy, Mani cc
    Pinnau, Ingo cc
    Castaño, Pedro cc
    Thomson, Murray J.
    Program
    Chemical Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2020-06
    Permanent link to this record
    http://hdl.handle.net/10754/664378
    
    Metadata
    Show full item record
    Abstract
    Abstract: Soot from combustion emissions has a negative impact on human health and the environment. Understanding and controlling soot formation is desirable to reduce this negative impact, especially as energy demands continue to increase. In this work, a range of fundamental combustion experiments are performed to better understand the soot formation process, and to develop diagnostics for measuring soot properties. First, studies on the effects of doping the flame with different polycyclic aromatic hydrocarbons (PAHs) was performed to investigate soot nucleation mechanisms. Soot formation was found to be most sensitive to phenylacetylene addition and nucleation through physical dimerization appears to be unlikely. Next, the effects of ammonia addition, a possible future fuel, on soot formation in laminar nonpremixed ethylene counterflow flames was performed. A reduction in soot volume fraction was observed and attributed to chemical effects of ammonia addition. Second, the investigation and development of several types of diagnostics was performed. Soot is typically reported to scale with pressure as Pn where P is pressure and n is a scaling factor. A wide range of scaling factors for ethylene coflow flames have been reported using different types of diagnostics. In this work, a comparison between a light extinction technique and PLII was performed and differences between reported values was explored. Next, the time resolved laser induced incandescence (TiRe-LII) diagnostic was advanced by exploring the effects of SVF on local gas heating. Errors introduced into this model by neglecting local gas heating are explored. Finally, a new diagnostic was developed for 3 dimensional measurements of SVF and velocity in turbulent flames using a technique known as diffuse-backlight illumination extinction imaging. Third, the application of gated 2D TiRe-LII was assessed in pressurized environments on laminar coflow flames. Comparisons between TiRe-LII and thermophoretically captured soot imaged by transmission electron microscopy (TEM) was performed. TiRe-LII was found to have reasonable agreement with TEM measurements if the SNR was high, but due to the large disparity in primary particle size in pressurized environments errors in 2D TiRe-LII can be significant.
    Citation
    Bennett, A. (2020). Fundamental Studies of Soot Formation and Diagnostic Development in Nonpremixed Combustion Environments. KAUST Research Repository. https://doi.org/10.25781/KAUST-QA96Z
    DOI
    10.25781/KAUST-QA96Z
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-QA96Z
    Scopus Count
    Collections
    Dissertations; Physical Science and Engineering (PSE) Division; Chemical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.