• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A unified first order hyperbolic model for nonlinear dynamic rupture processes in diffuse fracture zones

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    8.937Mb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Gabriel, Alice-Agnes
    Li, Duo
    Chiocchetti, Simone
    Tavelli, Maurizio
    Peshkov, Ilya
    Romenski, Evgeniy
    Dumbser, Michael
    KAUST Grant Number
    ORS-2017-CRG6 3389.02
    Date
    2020-07-02
    Permanent link to this record
    http://hdl.handle.net/10754/664359
    
    Metadata
    Show full item record
    Abstract
    Earthquake fault zones are more complex, both geometrically and rheologically, than an idealised infinitely thin plane embedded in linear elastic material. To incorporate nonlinear material behaviour, natural complexities and multi-physics coupling within and outside of fault zones, here we present a first order hyperbolic and thermodynamically compatible mathematical model for a continuum in a gravitational field which provides a unified description of nonlinear elasto-plasticity, material damage and of viscous Newtonian flows with phase transition between solid and liquid phases. The fault geometry and secondary cracks are described via a scalar function $\xi \in [0,1]$ that indicates the local level of material damage. The model also permits the representation of arbitrarily complex geometries via a diffuse interface approach based on the solid volume fraction function $\alpha \in [0,1]$. Neither of the two scalar fields $\xi$ and $\alpha$ needs to be mesh-aligned, allowing thus faults and cracks with complex topology and the use of adaptive Cartesian meshes (AMR). The model shares common features with phase-field approaches, but substantially extends them. We show a wide range of numerical applications that are relevant for dynamic earthquake rupture in fault zones, including the co-seismic generation of secondary off-fault shear cracks, tensile rock fracture in the Brazilian disc test, as well as a natural convection problem in molten rock-like material.
    Sponsors
    This research has been supported by the European Union’s Horizon 2020 Research and Innovation Programme under the projects ExaHyPE, grant no. 671698, ChEESE, grant no. 823844 and TEAR, grant no. 852992. MD and IP also acknowledge funding from the Italian Ministry of Education, University and Research (MIUR) via the Departments of Excellence Initiative 2018–2022 attributed to DICAM of the University of Trento (grant L. 232/2016) and the PRIN 2017 project Innovative numerical methods for evolutionary partial differential equations and applications. SC was also funded by the Deutsche Forschungsgemeinschaft (DFG) under the project DROPIT, grant no. GRK 2160/1. ER was also funded within the framework of the state contract of the Sobolev Institute of Mathematics (project no.0314-2019-0012). AG also acknowledges funding by the German Research Foundation (DFG) (grants no. GA 2465/2-1, GA 2465/3-1), by KAUST-CRG (grant no. ORS-2017-CRG6 3389.02) and by KONWIHR (project NewWave). Computing resources were provided by the Institute of Geophysics of LMU Munich [49] and the Leibniz Supercomputing Centre (project no. pr63qo).
    Publisher
    arXiv
    arXiv
    2007.01026
    Additional Links
    https://arxiv.org/pdf/2007.01026
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.