• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Heterogeneous Integration Strategy for Obtaining Physically Flexible 3D Compliant Electronic Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhD Dissertation Sohail Shaikh Final.pdf
    Size:
    6.433Mb
    Format:
    PDF
    Description:
    Final Thesis
    Embargo End Date:
    2021-07-20
    Download
    Type
    Dissertation
    Authors
    Shaikh, Sohail F. cc
    Advisors
    Hussain, Muhammad Mustafa cc
    Committee members
    Eltawil, Ahmed cc
    Duarte, Carlos M. cc
    Ma, Zhenqiang (Jack)
    Program
    Electrical Engineering
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2020-07
    Embargo End Date
    2021-07-20
    Permanent link to this record
    http://hdl.handle.net/10754/664340
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2021-07-20.
    Abstract
    Electronic devices today are an integral part of human life thanks to state-of-the- art complementary metal oxide semiconductor (CMOS) technology. The progress in this area can be attributed to miniaturization driven by Moore’s Law. Further advancements in electronics are under threat from physical limits in dimensional scaling and hence new roadmaps for alternative materials and technologies are chased. Furthermore, the current era of Internet of things (IoT) and Internet of everything (IoE) has broaden the horizon to a plethora of unprecedented applications. The most prominent emerging fields are flexible and stretchable electronics. There has been significant progress in developments of flexible sensors, transistors, and alternative materials, etc. Nonetheless, there remains the unaddressed challenges of matching performance of the status-quo, packaging, interconnects, and lack of pragmatic integration schemes to readily complement existing state-of-the-art technology. In this thesis, a pragmatic heterogeneous integration strategy is presented to obtain high-performance 3D electronic systems using existing CMOS based integrated circuit (IC). Critical challenges addressed during the process are: reliable flexible interconnects, maximum area efficiency, soft-polymeric packaging, and heterogeneous integration compatible with current CMOS technology. First, a modular LEGO approach presents a novel method to obtain flexible electronics in a lock-and-key plug and play manner with reliable interconnects. A process of converting standard rigid IC into flexible LEGO without any performance degradation with a high-yield is shown. For the majority of healthcare and other monitoring applications in IoT, sensory array is used for continuous monitoring and spatiotemporal mapping activities. Here we present ultra-high-density sensory solution (1 million sensors) as an epitome of density and address each of the associated challenges. A generic heterogeneous integration scheme has been presented to obtain physically flexible standalone electronic system using 3D-coin architecture. This 3D-coin architecture hosts sensors on one side, readout circuit and data processing units embedded in the polymer, and the other side is reserved for antenna and energy harvester (photovoltaic). This thin platform (~ 300 μm) has achieved bending radius of 1 mm while maintaining reliable electrical interconnection using through-polymer-via (TPV) and soft-polymeric encapsulation. This coin integration scheme is compatible with existing CMOS technology and suitable for large scale manufacturing. Lastly, a featherlight non-invasive ‘Marine-Skin’ platform to monitor deep-ocean monitoring is presented using the heterogeneous integration scheme. Electrical and mechanical characterization has been done to establish reliability, integrity, robustness, and ruggedness of the processes, sensors, and multisensory flexible system.
    Citation
    Shaikh, S. F. (2020). Heterogeneous Integration Strategy for Obtaining Physically Flexible 3D Compliant Electronic Systems. KAUST Research Repository. https://doi.org/10.25781/KAUST-4N145
    DOI
    10.25781/KAUST-4N145
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-4N145
    Scopus Count
    Collections
    Dissertations; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.