3D High Spatial Resolution Visualisation and Quantification of Interconnectivity in Polymer Films.
Name:
3D High Spatial Resolution Visualisation and Quantification of Interconnectivity in Polymer Films.pdf
Size:
46.56Mb
Format:
PDF
Description:
Accepted manuscript
Type
ArticleDate
2020-07-12Online Publication Date
2020-07-12Print Publication Date
2020-09Embargo End Date
2021-07-15Submitted Date
2020-03-11Permanent link to this record
http://hdl.handle.net/10754/664282
Metadata
Show full item recordAbstract
A porous network acts as transport paths for drugs through films for controlled drug release. The interconnectivity of the network strongly influences the transport properties. It is therefore important to quantify the interconnectivity and correlate it to transport properties for control and design of new films. This work presents a novel method for 3D visualisation and analysis of interconnectivity. High spatial resolution 3D data on porous polymer films for controlled drug release has been acquired using a focused ion beam (FIB) combined with a scanning electron microscope (SEM). The data analysis method enables visualisation of pore paths starting at a chosen inlet pore, dividing them into groups by length, enabling a more detailed quantification and visualisation. The method also enables identification of the central features of the porous network by quantification of channels where pore paths coincide. The method was applied to FIB-SEM data of three leached ethyl cellulose (EC)/hydroxypropyl cellulose (HPC) films with different weight percentages. The results from the analysis were consistent with the experimentally measured release properties of the films. The interconnectivity and porosity increase with increasing amount of HPC. The bottleneck effect was strong in the leached film with lowest porosity.Citation
Fager, C., Barman, S., Röding, M., Olsson, A., Lorén, N., von Corswant, C., … Olsson, E. (2020). 3D High Spatial Resolution Visualisation and Quantification of Interconnectivity in Polymer Films. International Journal of Pharmaceutics, 119622. doi:10.1016/j.ijpharm.2020.119622Sponsors
This work was funded by the Swedish Foundation for Strategic Research (SSF). The authors are grateful for the financial support. We wish to thank AstraZeneca for providing the material and Chalmers Material Analysis Laboratory for their support of microscopes. We also thank Prof. Aila Särkkä and everyone involved in the SSF project for valuable feedback; and for the feedback given at workshops organized by the Chalmers center SuMo Biomaterials and within the project COSIMA, both funded by Vinnova.Publisher
Elsevier BVPubMed ID
32663584Additional Links
https://linkinghub.elsevier.com/retrieve/pii/S0378517320306062ae974a485f413a2113503eed53cd6c53
10.1016/j.ijpharm.2020.119622
Scopus Count
Related articles
- Convolutional neural networks for segmentation of FIB-SEM nanotomography data from porous polymer films for controlled drug release.
- Authors: Skärberg F, Fager C, Mendoza-Lara F, Josefson M, Olsson E, Lorén N, Röding M
- Issue date: 2021 Jul
- Three-dimensional reconstruction of porous polymer films from FIB-SEM nanotomography data using random forests.
- Authors: RÖding M, Fager C, Olsson A, VON Corswant C, Olsson E, LorÉn N
- Issue date: 2021 Jan
- New Characterization Measures of Pore Shape and Connectivity Applied to Coatings used for Controlled Drug Release.
- Authors: Barman S, Fager C, Röding M, Lorén N, von Corswant C, Olsson E, Bolin D, Rootzén H
- Issue date: 2021 Jul
- FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography.
- Authors: Neusser G, Eppler S, Bowen J, Allender CJ, Walther P, Mizaikoff B, Kranz C
- Issue date: 2017 Oct 5
- Effects of molecular weight on permeability and microstructure of mixed ethyl-hydroxypropyl-cellulose films.
- Authors: Andersson H, Hjärtstam J, Stading M, von Corswant C, Larsson A
- Issue date: 2013 Jan 23