Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco.
Type
ArticleAuthors
Moreno, Juan C
Mi, Jianing

Agrawal, Shreya
Kössler, Stella
Turečková, Veronika
Tarkowská, Danuše
Thiele, Wolfram
Al-Babili, Salim

Bock, Ralph
Schöttler, Mark Aurel
KAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionCenter for Desert Agriculture
Plant Science
Date
2020-08Online Publication Date
2020-08Print Publication Date
2020-09Embargo End Date
2021-07-06Permanent link to this record
http://hdl.handle.net/10754/664081
Metadata
Show full item recordAbstract
Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role, and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and plant development, but resulted in specific modifications in carotenoid content. Unexpectedly, the expression of the carrot lycopene b-cyclase (DcLCYB1) in Nicotiana tabacum cv. Xanthi not only resulted in increased carotenoid accumulation, but also in altered plant architecture characterized by longer internodes, faster plant growth, early flowering and increased biomass. Here, we have challenged these transformants with a range of growth conditions to determine the robustness of their phenotype and analyze the underlying mechanisms. Transgenic DcLCYB1 lines showed increased transcript levels of key genes involved in carotenoid, chlorophyll, gibberellin (GA) and abscisic acid (ABA) biosynthesis, but also in photosynthesis-related genes. Accordingly, their carotenoid, chlorophyll, ABA and GA contents were increased. Hormone application and inhibitor experiments confirmed the key role of altered GA/ABA contents in the growth phenotype. Because the longer internodes reduce shading of mature leaves, induction of leaf senescence was delayed, and mature leaves maintained a high photosynthetic capacity. This increased total plant assimilation, as reflected in higher plant yields under both fully-controlled constant and fluctuating light, and in non-controlled conditions. Furthermore, our data is a warning that engineering of isoprenoid metabolism can cause complex changes in phytohormone homeostasis and therefore plant development, which have not been sufficiently considered in previous studies.Citation
Moreno, J. C., Mi, J., Agrawal, S., Kössler, S., Turečková, V., Tarkowská, D., … Schöttler, M. A. (2020). Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. The Plant Journal. doi:10.1111/tpj.14909Publisher
WileyJournal
The Plant JournalPubMed ID
32623777Additional Links
https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.14909ae974a485f413a2113503eed53cd6c53
10.1111/tpj.14909
Scopus Count
Related articles
- Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.
- Authors: Moreno JC, Cerda A, Simpson K, Lopez-Diaz I, Carrera E, Handford M, Stange C
- Issue date: 2016 Apr
- Lycopene β-cyclase expression influences plant physiology, development, and metabolism in tobacco plants.
- Authors: Kössler S, Armarego-Marriott T, Tarkowská D, Turečková V, Agrawal S, Mi J, de Souza LP, Schöttler MA, Schadach A, Fröhlich A, Bock R, Al-Babili S, Ruf S, Sampathkumar A, Moreno JC
- Issue date: 2021 Mar 29
- Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana.
- Authors: Li T, Liu JX, Deng YJ, Xu ZS, Xiong AS
- Issue date: 2021 Oct 18
- Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota.
- Authors: Moreno JC, Pizarro L, Fuentes P, Handford M, Cifuentes V, Stange C
- Issue date: 2013
- Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants.
- Authors: Ryan AC, Hewitt CN, Possell M, Vickers CE, Purnell A, Mullineaux PM, Davies WJ, Dodd IC
- Issue date: 2014 Jan