Seagrass losses since mid-20th century fuelled CO 2 emissions from soil carbon stocks
Type
ArticleAuthors
Salinas, Cristian
Duarte, Carlos M.

Lavery, P. S.

Masqué, Pere

Arias-Ortiz, Ariane

Leon, Javier X.

Callaghan, David

Kendrick, G. A.

Serrano, Oscar

KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionMarine Science Program
Red Sea Research Center (RSRC)
Date
2020-07-07Online Publication Date
2020-07-07Print Publication Date
2020-09Submitted Date
2020-02-05Permanent link to this record
http://hdl.handle.net/10754/664080
Metadata
Show full item recordAbstract
Seagrass meadows store globally significant organic carbon (Corg) stocks which, if disturbed, can lead to CO2 emissions, contributing to climate change. Eutrophication and thermal stress continue to be a major cause of seagrass decline worldwide, but the associated CO2 emissions remain poorly understood. This study presents comprehensive estimates of seagrass soil Corg erosion following eutrophication-driven seagrass loss in Cockburn Sound (23 km2 between 1960s and 1990s) and identifies the main drivers. We estimate that shallow seagrass meadows (<5 m depth) had significantly higher Corg stocks in 50 cm thick soils (4.5 ± 0.7 kg Corg/m2) than previously vegetated counterparts (0.5 ± 0.1 kg Corg/m2). In deeper areas (>5 m), however, soil Corg stocks in seagrass and bare but previously vegetated areas were not significantly different (2.6 ± 0.3 and 3.0 ± 0.6 kg Corg/m2, respectively). The soil Corg sequestration capacity prevailed in shallow and deep vegetated areas (55 ± 11 and 21 ± 7 g Corg m−2 year−1, respectively), but was lost in bare areas. We identified that seagrass canopy loss alone does not necessarily drive changes in soil Corg but, when combined with high hydrodynamic energy, significant erosion occurred. Our estimates point at ~0.20 m/s as the critical shear velocity threshold causing soil Corg erosion. We estimate, from field studies and satellite imagery, that soil Corg erosion (within the top 50 cm) following seagrass loss likely resulted in cumulative emissions of 0.06–0.14 Tg CO2-eq over the last 40 years in Cockburn Sound. We estimated that indirect impacts (i.e. eutrophication, thermal stress and light stress) causing the loss of ~161,150 ha of seagrasses in Australia, likely resulted in the release of 11–21 Tg CO2-eq since the 1950s, increasing cumulative CO2 emissions from land-use change in Australia by 1.1%–2.3% per annum. The patterns described serve as a baseline to estimate potential CO2 emissions following disturbance of seagrass meadows.Citation
Salinas, C., Duarte, C. M., Lavery, P. S., Masque, P., Arias-Ortiz, A., Leon, J. X., … Serrano, O. (2020). Seagrass losses since mid-20th century fuelled CO 2 emissions from soil carbon stocks. Global Change Biology. doi:10.1111/gcb.15204Sponsors
This work was supported by the ECU Faculty Research Grant Scheme. C.S. was funded by ECU Higher Degree by Research Scholarship. O.S. was supported by an ARC DECRA DE170101524. This work is contributing to the ICTA ‘Unit of Excellence’ (MinECo, MDM2015-0552). P.M. and A.A.-O. acknowledge the support by the Generalitat de Catalunya (Grant 2017 SGR-1588). A.A.-O. was supported by a PhD scholarship from Obra Social ‘LaCaixa’ (LCF/BQ/ES14/10320004). The International Atomic Energy Agency is grateful for the support provided to its Environment Laboratories by the Government of the Principality of Monaco.Publisher
WileyJournal
Global Change BiologyAdditional Links
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15204https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/gcb.15204
ae974a485f413a2113503eed53cd6c53
10.1111/gcb.15204
Scopus Count
Except where otherwise noted, this item's license is described as This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.