• Login
    View Item 
    •   Home
    • Research
    • Datasets
    • View Item
    •   Home
    • Research
    • Datasets
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus, supplement to: Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy (2018): An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology & Evolution, 2(2), 334-342

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Dataset
    Authors
    Schunter, Celia Marei cc
    Welch, Megan J.
    Nilsson, Göran E.
    Rummer, Jodie L.
    Munday, Philip L.
    Ravasi, Timothy cc
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Bioscience Program
    Integrative Systems Biology Lab
    Date
    2019
    Permanent link to this record
    http://hdl.handle.net/10754/663946
    
    Metadata
    Show full item record
    Abstract
    The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.
    Citation
    Schunter, C., Welch, M. J., Nilsson, G. E., Rummer, J. L., Munday, P. L., & Ravasi, T. (2019). Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus, supplement to: Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy (2018): An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology & Evolution, 2(2), 334-342 [Data set]. PANGAEA - Data Publisher for Earth & Environmental Science. https://doi.org/10.1594/PANGAEA.900202
    Publisher
    PANGAEA - Data Publisher for Earth & Environmental Science
    DOI
    10.1594/pangaea.900202
    Relations
    Is Supplement To:
    • [Article]
      Schunter C, Welch MJ, Nilsson GE, Rummer JL, Munday PL, et al. (2017) An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology & Evolution. Available: http://dx.doi.org/10.1038/s41559-017-0428-8.. DOI: 10.1038/s41559-017-0428-8 HANDLE: 10754/626399
    ae974a485f413a2113503eed53cd6c53
    10.1594/pangaea.900202
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Bioscience Program; Integrative Systems Biology Lab; Datasets

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment, supplement to: Burdett, H L; Perna, G; McKay, Lucy; Broomhead, Gemma; Kamenos, N A (2018): Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Marine Ecology Progress Series, 587, 73-80

      Burdett, HL; Perna, Gabriela; McKay, L; Broomhead, G; Kamenos, NA (PANGAEA - Data Publisher for Earth & Environmental Science, 2019) [Dataset]
      The rate of change in ocean carbonate chemistry is a vital determinant in the magnitude of effects observed. Benthic marine ecosystems are facing an increasing risk of acute CO2 exposure that may be natural or anthropogenically derived (e.g. engineering and industrial activities). However, our understanding of how acute CO2 events impact marine life is restricted to individual organisms, with little understanding for how this manifests at the community level. Here, we investigated in situ the effect of acute CO2 enrichment on the coralline algal ecosystem—a globally ubiquitous, ecologically and economically important habitat, but one which is likely to be sensitive to CO2 enrichment due to its highly calcified reef-like structures engineered by coralline algae. Most notably, we observed a rapid community-level shift to favour net dissolution rather than net calcification. Smaller changes from net respiration to net photosynthesis were also observed. There was no effect on the net flux of DMS/DMSP (algal secondary metabolites), nor on the nutrients nitrate and phosphate. Following return to ambient CO2 levels, only a partial recovery was seen within the monitoring timeframe. This study highlights the sensitivity of biogenic carbonate marine communities to acute CO2 enrichment and raises concerns over the capacity for the system to 'bounce back' if subjected to repeated acute high-CO2 events.
    • Thumbnail

      Codon Deviation Coefficient: A novel measure for estimating codon usage bias and its statistical significance

      Zhang, Zhang; Li, Jun; Cui, Peng; Ding, Feng; Li, Ang; Townsend, Jeffrey P; Yu, Jun (BMC Bioinformatics, Springer Nature, 2012-03-23) [Article]
      Background: Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB). Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis.Results: Here we propose a novel measure--Codon Deviation Coefficient (CDC)--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance.Conclusions: As validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions. 2012 Zhang et al; licensee BioMed Central Ltd.
    • Thumbnail

      Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points

      Migliorati, Giovanni; Nobile, Fabio; Tempone, Raul (Journal of Multivariate Analysis, Elsevier BV, 2015-08-28) [Article]
      We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability measure. The convergence estimates are given in mean-square sense with respect to the sampling measure. The noise may be correlated with the location of the evaluation and may have nonzero mean (offset). We consider both cases of bounded or square-integrable noise / offset. We prove conditions between the number of sampling points and the dimension of the underlying approximation space that ensure a stable and accurate approximation. Particular focus is on deriving estimates in probability within a given confidence level. We analyze how the best approximation error and the noise terms affect the convergence rate and the overall confidence level achieved by the convergence estimate. The proofs of our convergence estimates in probability use arguments from the theory of large deviations to bound the noise term. Finally we address the particular case of multivariate polynomial approximation spaces with any density in the beta family, including uniform and Chebyshev.
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.