Efficient quasi-P wavefield extrapolation using an isotropic lowrank approximation
dc.contributor.author | Zhang, Z. | |
dc.contributor.author | Alkhalifah, Tariq Ali | |
dc.date.accessioned | 2020-06-29T12:03:35Z | |
dc.date.available | 2020-06-29T12:03:35Z | |
dc.date.issued | 2017-03-13 | |
dc.identifier.citation | Zhang, Z., & Alkhalifah, T. (2016). Efficient Quasi-P Wavefield Extrapolation Using an Isotropic Lowrank Approximation. 78th EAGE Conference and Exhibition 2016. doi:10.3997/2214-4609.201600814 | |
dc.identifier.isbn | 9789462821859 | |
dc.identifier.doi | 10.3997/2214-4609.201600814 | |
dc.identifier.uri | http://hdl.handle.net/10754/663931 | |
dc.description.abstract | Usually the computational cost of the quasi-P simulation depends on the complexity of the medium, and specifically the anisotropy. The effective-model method splits the anisotropic dispersion relation to an isotropic background and a correction factor that depends on the gradient of the wavefields. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, and an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition. The proposed method provides accurate wavefields in phase and a more balanced amplitude. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous VTI model and the revised Hess VTI model demonstrate the effectiveness of the approach. | |
dc.description.sponsorship | We thank KAUST for its support and the SWAG members especially Zedong and Nabil for their valuable insights, as well as Yike Liu for his help. We thank Hess cooperation for the VTI model. | |
dc.publisher | EAGE Publications BV | |
dc.relation.url | http://www.earthdoc.org/publication/publicationdetails/?publication=85059 | |
dc.rights | Archived with thanks to EAGE Publications BV | |
dc.title | Efficient quasi-P wavefield extrapolation using an isotropic lowrank approximation | |
dc.type | Conference Paper | |
dc.contributor.department | Earth Science and Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.contributor.department | Seismic Wave Analysis Group | |
dc.conference.date | 2016-05-30 to 2016-06-02 | |
dc.conference.name | 78th EAGE Conference and Exhibition 2016: Efficient Use of Technology - Unlocking Potential | |
dc.conference.location | Vienna, AUT | |
dc.eprint.version | Pre-print | |
kaust.person | Zhang, Z. | |
kaust.person | Alkhalifah, Tariq Ali | |
dc.identifier.eid | 2-s2.0-85085849952 | |
kaust.acknowledged.supportUnit | SWAG members |
This item appears in the following Collection(s)
-
Conference Papers
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Earth Science and Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/earth-science-and-engineering/Pages/home.aspx