Show simple item record

dc.contributor.authorShi, Yu
dc.contributor.authorWang, Gang
dc.contributor.authorMei, Jinlin
dc.contributor.authorXiao, Chengkun
dc.contributor.authorHu, Di
dc.contributor.authorWang, Aocheng
dc.contributor.authorSong, Yidong
dc.contributor.authorNi, Yan
dc.contributor.authorJiang, Guiyuan
dc.contributor.authorDuan, Aijun
dc.date.accessioned2020-06-28T08:50:41Z
dc.date.available2020-06-28T08:50:41Z
dc.date.issued2020-06-17
dc.identifier.citationShi, Y., Wang, G., Mei, J., Xiao, C., Hu, D., Wang, A., … Duan, A. (2020). The Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts. ACS Omega. doi:10.1021/acsomega.0c01783
dc.identifier.issn2470-1343
dc.identifier.issn2470-1343
dc.identifier.doi10.1021/acsomega.0c01783
dc.identifier.urihttp://hdl.handle.net/10754/663878
dc.description.abstractA series of mesoporous materials of SBA-16 were in situ incorporated into ZSM-5 crystallites via a two-step self-assemble method, and hydrodesulfurization (HDS) catalysts were prepared on the corresponding ZSM-5/SBA-16 (ZS) composites. The characterization results indicated that ZSM-5 nanoseeds were fabricated into the silica framework of the ZS composites, and the three-dimensional Im3m cubic structure of SBA-16 was retained simultaneously. In addition, the ZS series materials possessed open pores and large surfaces, which would facilitate the diffusion of reactants in the mesoporous channels. Moreover, the introduction of ZSM-5 seeds into composites could enhance the acidities of supports. As a result, the NiMo/ZS series catalysts exhibited high activities for DBT HDS processes. The NiMo/ZS-160 catalyst exhibited the highest catalytic efficiency (96.5%), which was apparently attributed to the synergistic contributions of the physicochemical properties of ZS supports and the dispersion states of active metals. Correspondingly, DBT HDS reactions over the NiMo/ZS series catalysts mainly proceeded via a hydrogenation desulfurization route that benefitted from the enhanced acidities especially the total Brønsted acid.
dc.description.sponsorshipThis research was supported by the National Natural Science Foundation of China (no. 21878330, 21676298), the CNPC Key Research Project (2016E-0707), the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2019-CPF4103.2, and the Project of National Key R&D Program of China (no. 2019YFC1907700).
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acsomega.0c01783
dc.rightsThis is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_termsofuse.html
dc.titleThe Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts
dc.typeArticle
dc.identifier.journalACS Omega
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionState Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 18 Fuxue Road, Beijing 102249, P.R. China
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)
dc.date.published-online2020-06-17
dc.date.published-print2020-06-30


This item appears in the following Collection(s)

Show simple item record