The Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts
Type
ArticleAuthors
Shi, YuWang, Gang
Mei, Jinlin
Xiao, Chengkun
Hu, Di
Wang, Aocheng
Song, Yidong
Ni, Yan
Jiang, Guiyuan

Duan, Aijun

Date
2020-06-17Online Publication Date
2020-06-17Print Publication Date
2020-06-30Permanent link to this record
http://hdl.handle.net/10754/663878
Metadata
Show full item recordAbstract
A series of mesoporous materials of SBA-16 were in situ incorporated into ZSM-5 crystallites via a two-step self-assemble method, and hydrodesulfurization (HDS) catalysts were prepared on the corresponding ZSM-5/SBA-16 (ZS) composites. The characterization results indicated that ZSM-5 nanoseeds were fabricated into the silica framework of the ZS composites, and the three-dimensional Im3m cubic structure of SBA-16 was retained simultaneously. In addition, the ZS series materials possessed open pores and large surfaces, which would facilitate the diffusion of reactants in the mesoporous channels. Moreover, the introduction of ZSM-5 seeds into composites could enhance the acidities of supports. As a result, the NiMo/ZS series catalysts exhibited high activities for DBT HDS processes. The NiMo/ZS-160 catalyst exhibited the highest catalytic efficiency (96.5%), which was apparently attributed to the synergistic contributions of the physicochemical properties of ZS supports and the dispersion states of active metals. Correspondingly, DBT HDS reactions over the NiMo/ZS series catalysts mainly proceeded via a hydrogenation desulfurization route that benefitted from the enhanced acidities especially the total Brønsted acid.Citation
Shi, Y., Wang, G., Mei, J., Xiao, C., Hu, D., Wang, A., … Duan, A. (2020). The Influence of Pore Structure and Acidity on the Hydrodesulfurization of Dibenzothiophene over NiMo-Supported Catalysts. ACS Omega. doi:10.1021/acsomega.0c01783Sponsors
This research was supported by the National Natural Science Foundation of China (no. 21878330, 21676298), the CNPC Key Research Project (2016E-0707), the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2019-CPF4103.2, and the Project of National Key R&D Program of China (no. 2019YFC1907700).Publisher
American Chemical Society (ACS)Journal
ACS OmegaAdditional Links
https://pubs.acs.org/doi/10.1021/acsomega.0c01783ae974a485f413a2113503eed53cd6c53
10.1021/acsomega.0c01783