Show simple item record

dc.contributor.authorGenton, Marc G.
dc.contributor.authorKeyes, David E.
dc.contributor.authorTurkiyyah, George
dc.date.accessioned2020-06-24T07:22:29Z
dc.date.available2020-06-24T07:22:29Z
dc.date.issued2017
dc.identifier.citationGenton, M. G., Keyes, D. E., & Turkiyyah, G. (2017). Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities [Data set]. Taylor & Francis. https://doi.org/10.6084/M9.FIGSHARE.5386996
dc.identifier.doi10.6084/m9.figshare.5386996
dc.identifier.urihttp://hdl.handle.net/10754/663816
dc.description.abstractWe present a hierarchical decomposition scheme for computing the $\textit{n}$-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low-rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n2) to O(mn+knlog(n/m)), where $\textit{k}$ is the numerical rank of off-diagonal matrix blocks and $\textit{m}$ is the size of small diagonal blocks in the matrix that are not well-approximated by low-rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations. Supplementary material for this article is available online.
dc.publisherfigshare
dc.subjectBiophysics
dc.subjectBiochemistry
dc.subject29999 Physical Sciences not elsewhere classified
dc.subjectCell Biology
dc.subjectBiotechnology
dc.subjectEvolutionary Biology
dc.subject39999 Chemical Sciences not elsewhere classified
dc.subjectImmunology
dc.subject80699 Information Systems not elsewhere classified
dc.subjectMarine Biology
dc.subjectCancer
dc.subject110309 Infectious Diseases
dc.subjectComputational Biology
dc.titleHierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities
dc.typeDataset
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentExtreme Computing Research Center
dc.contributor.departmentSpatio-Temporal Statistics and Data Analysis Group
dc.contributor.departmentStatistics Program
dc.contributor.institutionDepartment of Computer Science, American University of Beirut, Beirut, Lebanon.
kaust.personGenton, Marc G.
kaust.personKeyes, David E.
dc.relation.issupplementtoDOI:10.1080/10618600.2017.1375936
display.relations<b> Is Supplement To:</b><br/> <ul> <li><i>[Article]</i> <br/> Genton MG, Keyes DE, Turkiyyah G (2017) Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities. Journal of Computational and Graphical Statistics: 0–0. Available: http://dx.doi.org/10.1080/10618600.2017.1375936.. DOI: <a href="https://doi.org/10.1080/10618600.2017.1375936" >10.1080/10618600.2017.1375936</a> HANDLE: <a href="http://hdl.handle.net/10754/625457">10754/625457</a></li></ul>


This item appears in the following Collection(s)

Show simple item record