A Memory-efficient Implementation of Perfectly Matched Layer with Smoothly-varying Coefficients in Discontinuous Galerkin Time-Domain Method
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionDivision of Computer, Electrical, and Mathematical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Electrical Engineering Program
Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
Physical Science and Engineering (PSE) Division
KAUST Grant Number
2019-CRG8-4056Date
2020Preprint Posting Date
2020-06-04Permanent link to this record
http://hdl.handle.net/10754/663705
Metadata
Show full item recordAbstract
Wrapping a computation domain with a perfectly matched layer (PML) is one of the most effective methods of imitating/approximating the radiation boundary condition in Maxwell and wave equation solvers. Many PML implementations often use a smoothly-increasing attenuation coefficient to increase the absorption for a given layer thickness, and, at the same time, to reduce the numerical reflection from the interface between the computation domain and the PML. In discontinuous Galerkin time-domain (DGTD) methods, using a PML coefficient that varies within a mesh element requires a different mass matrix to be stored for every element and therefore significantly increases the memory footprint. In this work, this bottleneck is addressed by applying a weight-adjusted approximation to these mass matrices. The resulting DGTD scheme has the same advantages as the scheme that stores individual mass matrices, namely higher accuracy (due to reduced numerical reflection) and increased meshing flexibility (since the PML does not have to be defined layer by layer) but it requires significantly less memory.Citation
Chen, L., Ozakin, M. B., Ahmed, S., & Bagci, H. (2020). A Memory-efficient Implementation of Perfectly Matched Layer with Smoothly-varying Coefficients in Discontinuous Galerkin Time-Domain Method. IEEE Transactions on Antennas and Propagation, 1–1. doi:10.1109/tap.2020.3037651Sponsors
This work is supported in part by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No 2019-CRG8-4056 and in part by the KAUST Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC). The authors would like to thank the KAUST Supercomputing Laboratory (KSL) for providing the required computational resources.arXiv
2006.02551Additional Links
https://ieeexplore.ieee.org/document/9263382/https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9263382
ae974a485f413a2113503eed53cd6c53
10.1109/TAP.2020.3037651
Scopus Count
Except where otherwise noted, this item's license is described as This work is licensed under a Creative Commons Attribution 4.0 License.