Efficient discontinuous Galerkin scheme for analyzing nanostructured photoconductive devices
dc.contributor.author | Chen, Liang | |
dc.contributor.author | Sirenko, Kostyantyn | |
dc.contributor.author | Li, Ping | |
dc.contributor.author | Bagci, Hakan | |
dc.date.accessioned | 2021-05-23T09:17:48Z | |
dc.date.available | 2020-06-18T12:40:15Z | |
dc.date.available | 2021-05-23T09:17:48Z | |
dc.date.issued | 2021-04-12 | |
dc.identifier.citation | Chen, L., Sirenko, K., Li, P., & Bagci, H. (2021). Efficient discontinuous Galerkin scheme for analyzing nanostructured photoconductive devices. Optics Express, 29(9), 12903. doi:10.1364/oe.422619 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.doi | 10.1364/OE.422619 | |
dc.identifier.uri | http://hdl.handle.net/10754/663701 | |
dc.description.abstract | Incorporation of plasmonic nanostructures in the design of photoconductive devices (PCDs) has significantly improved their optical-to-terahertz conversion efficiency. However, this improvement comes at the cost of increased complexity for the design and simulation of these devices. Indeed, accurate and efficient modeling of multiphysics processes and intricate device geometries of nanostructured PCDs is challenging due to the high computational cost resulting from multiple characteristic scales in time and space. In this work, a discontinuous Galerkin (DG)-based unit-cell scheme for efficient simulation of PCDs with periodic nanostructures is proposed. The scheme considers two physical stages of the device and models them using two coupled systems: A system of Poisson and drift-diffusion equations describing the nonequilibrium steady state, and a system of Maxwell and drift-diffusion equations describing the transient stage. A "potential-drop" boundary condition is enforced on the opposing boundaries of the unit cell to mimic the effect of the bias voltage. Periodic boundary conditions are used for carrier densities and electromagnetic fields. The unit-cell model described by these coupled equations and boundary conditions is discretized using DG methods. Numerical results demonstrate that the proposed DG-based unit-cell scheme has the same accuracy in predicting the THz photocurrent as the DG framework that takes into account the whole device, while it significantly reduces the computational cost. | |
dc.description.sponsorship | Funding. King Abdullah University of Science and Technology (2016-CRG5-2953); Okawa Foundation Research Grant. Acknowledgments. The authors would like to thank the KAUST Supercomputing Laboratory (KSL) for providing the required computational resources. | |
dc.publisher | The Optical Society | |
dc.relation.url | https://www.osapublishing.org/abstract.cfm?URI=oe-29-9-12903 | |
dc.rights | Archived with thanks to Optics Express. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. | |
dc.rights.uri | https://doi.org/10.1364/OA_License_v1#VOR-OA | |
dc.title | Efficient discontinuous Galerkin scheme for analyzing nanostructured photoconductive devices | |
dc.type | Article | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical Engineering Program | |
dc.identifier.journal | Optics Express | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | O. Ya. Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine (IRE NASU), Kharkiv 61085, Ukraine | |
dc.contributor.institution | Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China | |
dc.identifier.volume | 29 | |
dc.identifier.issue | 9 | |
dc.identifier.pages | 12903-12917 | |
dc.identifier.arxivid | 2006.02141 | |
kaust.person | Chen, Liang | |
kaust.person | Bagci, Hakan | |
kaust.grant.number | 2016-CRG5-2953 | |
dc.identifier.eid | 2-s2.0-85105116385 | |
refterms.dateFOA | 2020-06-18T12:40:55Z | |
kaust.acknowledged.supportUnit | KAUST Supercomputing Laboratory (KSL) | |
dc.date.published-online | 2021-04-12 | |
dc.date.published-print | 2021-04-26 | |
dc.date.posted | 2020-05-29 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/