Crossover from diffusive to superfluid transport in frustrated magnets

We investigate the spin transport across the magnetic phase diagram of a frustrated antiferromagnetic insulator and uncover a drastic modification of the transport regime from spin diffusion to spin superfluidity. Adopting a triangular lattice accounting for both nearest-neighbor and next-nearest-neighbor exchange interactions with easy-plane anisotropy, we perform atomistic spin simulations on a two-terminal configuration across the full magnetic phase diagram. We found that as long as the ground state magnetic moments remain in-plane, irrespective of whether the magnetic configuration is ferromagnetic, collinear, or noncollinear antiferromagnetic, the system exhibits spin superfluid behavior with a device output that is independent of the value of the exchange interactions. When the magnetic frustration is large enough to compete with the easy-plane anisotropy and cant the magnetic moments out of the plane, the spin transport progressively evolves towards the diffusive regime. The robustness of spin superfluidity close to magnetic phase boundaries is investigated and we uncover the possibility for proximate spin superfluidity close to the ferromagnetic transition.

Goli, V. M. L. D. P., & Manchon, A. (2021). Crossover from diffusive to superfluid transport in frustrated magnets. Physical Review B, 103(10). doi:10.1103/physrevb.103.104425

American Physical Society (APS)

Physical Review B



Additional Links

Permanent link to this record

Version History

Now showing 1 - 2 of 2
2021-03-22 11:14:07
Published in journal
2020-06-17 11:16:24
* Selected version