A Calibration Procedure for Field and UAV-Based Uncooled Thermal Infrared Instruments.
Type
ArticleAuthors
Aragon Solorio, Bruno Jose Luis
Johansen, Kasper

Parkes, Stephen
Malbeteau, Yoann

Almashharawi, Samir

Al-Amoudi, Talal
Andrade, Cristhian F
Turner, Darren

Lucieer, Arko

McCabe, Matthew

KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEarth System Observation and Modelling
Environmental Science and Engineering
Environmental Science and Engineering Program
Water Desalination and Reuse Center, King Abdullah University of Science of Technology, Thuwal 23955, Saudi Arabia.
Water Desalination and Reuse Research Center (WDRC)
Date
2020-06-10Submitted Date
2020-05-07Permanent link to this record
http://hdl.handle.net/10754/663580
Metadata
Show full item recordAbstract
Thermal infrared cameras provide unique information on surface temperature that can benefit a range of environmental, industrial and agricultural applications. However, the use of uncooled thermal cameras for field and unmanned aerial vehicle (UAV) based data collection is often hampered by vignette effects, sensor drift, ambient temperature influences and measurement bias. Here, we develop and apply an ambient temperature-dependent radiometric calibration function that is evaluated against three thermal infrared sensors (Apogee SI-11(Apogee Electronics, Santa Monica, CA, USA), FLIR A655sc (FLIR Systems, Wilsonville, OR, USA), TeAx 640 (TeAx Technology, Wilnsdorf, Germany)). Upon calibration, all systems demonstrated significant improvement in measured surface temperatures when compared against a temperature modulated black body target. The laboratory calibration process used a series of calibrated resistance temperature detectors to measure the temperature of a black body at different ambient temperatures to derive calibration equations for the thermal data acquired by the three sensors. As a point-collecting device, the Apogee sensor was corrected for sensor bias and ambient temperature influences. For the 2D thermal cameras, each pixel was calibrated independently, with results showing that measurement bias and vignette effects were greatly reduced for the FLIR A655sc (from a root mean squared error (RMSE) of 6.219 to 0.815 degrees Celsius (℃)) and TeAx 640 (from an RMSE of 3.438 to 1.013 ℃) cameras. This relatively straightforward approach for the radiometric calibration of infrared thermal sensors can enable more accurate surface temperature retrievals to support field and UAV-based data collection efforts.Citation
Aragon, B., Johansen, K., Parkes, S., Malbeteau, Y., Al-Mashharawi, S., Al-Amoudi, T., … McCabe, M. F. (2020). A Calibration Procedure for Field and UAV-Based Uncooled Thermal Infrared Instruments. Sensors, 20(11), 3316. doi:10.3390/s20113316Sponsors
Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).Journal
SensorsPubMed ID
32532127ae974a485f413a2113503eed53cd6c53
10.3390/s20113316
Scopus Count
Except where otherwise noted, this item's license is described as This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Related articles
- Factors Influencing Temperature Measurements from Miniaturized Thermal Infrared (TIR) Cameras: A Laboratory-Based Approach.
- Authors: Wan Q, Brede B, Smigaj M, Kooistra L
- Issue date: 2021 Dec 18
- Field-Based Calibration of Unmanned Aerial Vehicle Thermal Infrared Imagery with Temperature-Controlled References.
- Authors: Han X, Thomasson JA, Swaminathan V, Wang T, Siegfried J, Raman R, Rajan N, Neely H
- Issue date: 2020 Dec 11
- Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture.
- Authors: Ribeiro-Gomes K, Hernández-López D, Ortega JF, Ballesteros R, Poblete T, Moreno MA
- Issue date: 2017 Sep 23
- Inter-comparison of thermal measurements using ground-based sensors, UAV thermal cameras, and eddy covariance radiometers.
- Authors: Torres-Rua A, Nieto H, Parry C, Elarab M, Collatz W, Coopmans C, McKee L, McKee M, Kustas W
- Issue date: 2018 Jul 30
- The Conception of Test Fields for Fast Geometric Calibration of the FLIR VUE PRO Thermal Camera for Low-Cost UAV Applications.
- Authors: Fryskowska-Skibniewska A, Delis P, Kedzierski M, Matusiak D
- Issue date: 2022 Mar 23