• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    LES/PDF modeling of swirl-stabilized non-premixed methane/air flames with local extinction and re-ignition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    CNF_10970_session_report.pdf
    Size:
    2.722Mb
    Format:
    PDF
    Description:
    Accepted manuscript
    Download
    Type
    Article
    Authors
    Yu, S.
    Liu, X.
    Bai, X. S.
    Elbaz, Ayman M.
    Roberts, William L. cc
    KAUST Department
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    high-pressure combustion (HPC) Research Group
    Date
    2020-06-08
    Online Publication Date
    2020-06-08
    Print Publication Date
    2020-09
    Submitted Date
    2019-10-14
    Permanent link to this record
    http://hdl.handle.net/10754/663577
    
    Metadata
    Show full item record
    Abstract
    Turbulent non-premixed flames with local extinction and re-ignition exhibit multiple combustion modes including ignition waves, diffusion flames, partially premixed flames, and ignition-assisted partially premixed flames. The mechanisms of local extinction and re-ignition are not well understood and numerical modeling of multi-mode combustion is a challenging task. In this work, a specially designed swirl-burner was used to study local extinction and re-ignition of non-premixed turbulent methane/air flames. High speed Particle Image Velocimetry (PIV) and laser induced fluorescence of OH radicals (OH-PLIF) measurements along with Large Eddy Simulation (LES) were carried out to investigate the mechanisms of extinction and re-ignition processes in the burner. LES is based on a transported probability density function model within the framework of Eulerian Stochastic Fields (PDF-ESF). It is found that local extinction occurs when the scalar dissipation rate around the stoichiometric mixture fraction is high. The characteristic time scale for local extinction and re-ignition in the present flames is an order of magnitude longer than the characteristic time scale of diffusion/extinction of laminar flamelets. There are two mechanisms for flame hole re-ignition in the present flames. First, under low degree of local extinction conditions (i.e., for small flame holes surrounded by flames) the flame hole re-ignition is due to the mechanism of turbulent flame folding. Second, under high degree of extinction conditions (i.e., with large regions of extinction and lifted flames), re-ignition of the locally extinguished flame is due to the mechanism of ignition assisted partially premixed flame propagation. The results show that the PDF-ESF model is capable of simulating the quenching and re-ignition process found in the experiments.
    Citation
    Yu, S., Liu, X., Bai, X. S., Elbaz, A. M., & Roberts, W. L. (2020). LES/PDF modeling of swirl-stabilized non-premixed methane/air flames with local extinction and re-ignition. Combustion and Flame, 219, 102–119. doi:10.1016/j.combustflame.2020.05.018
    Sponsors
    The experimental work was supported by competitive research funding from King Abdullah University of Science and Technology (KAUST), Saudi Arabia. The LES work was partly sponsored by Swedish Research Council (VR), and the Swedish Energy Agency (STEM) through the national center for combustion science and technologies (CeCOST) and Lund University Competence Center for Combustion Process (KC-FP). S. Yu and X. Liu were sponsored by China Scholarship Council (CSC). The computations were performed using the computer facilities provided by High Performance Computing Center North (HPC2N), and Center for Parallel Computers (PDC).
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2020.05.018
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S0010218020302017
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2020.05.018
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.