Type
ArticleAuthors
Zhang, YuantaoDeng, Gaoqiang
Yu, Ye
Wang, Yang
Zhao, Degang
Shi, Zhifeng
Zhang, Baolin
Li, Xiaohang

KAUST Department
Advanced Semiconductor LaboratoryComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
KAUST Grant Number
BAS/1/1664-01-01REP/1/3189-01-01
URF/1/3437-01-01
URF/1/3771-01-01
Date
2020-05-28Online Publication Date
2020-05-28Print Publication Date
2020-07-15Embargo End Date
2021-05-28Permanent link to this record
http://hdl.handle.net/10754/663241
Metadata
Show full item recordAbstract
In this study, we have demonstrated the N-polar III-nitride tunnel junction (TJ) light-emitting diode (LED). The LED was grown on the N-polar GaN template on sapphire substrates by metalorganic vapor phase epitaxy. The growth started with the n-GaN cladding layer whose doping condition was optimized by the periodic doping method and then the InGaN/GaN quantum well active region. Subsequently, the TJ was grown comprising a graded p-AlGaN layer, a thin undoped Al0.4Ga0.6N interlayer, and the topmost n-GaN layer. The I-V measurement show that the device resistance of the TJ LED was significantly reduced compared to the reference LED without the TJ due to enhanced hole injection. The electroluminescence measurement manifested that the emission and the external quantum efficiency of the TJ LED were greatly enhanced by ~70% compared with the reference LED. This work demonstrates that the TJ devices can be realized amid N-polarity that is promising for high-performance devices operating at various wavelength.Citation
Zhang, Y., Deng, G., Yu, Y., Wang, Y., Zhao, D., Shi, Z., … Li, X. (2020). Demonstration of N-polar III-nitride tunnel junction LED. ACS Photonics. doi:10.1021/acsphotonics.0c00269Sponsors
This work was supported by the National Key Research and Development Program (no.2016YFB0401801), the National Natural Science Foundation of China (nos. 61674068, and 61734001). X. Li acknowledges the support of KAUST Baseline Fund BAS/1/1664-01-01, GCC Research Council Grant REP/1/3189-01-01, and Competitive Research Grants URF/1/3437-01-01 and URF/1/3771-01-01.National Key Research and Development Program (no. 2016YFB0401801). National Natural Science Foundation of China (nos. 61674068, and 61734001). KAUST Baseline Fund BAS/1/1664-01-01. GCC Research Council Grant REP/1/3189-01-01. Competitive Research Grants URF/1/3437-01-01 and URF/1/3771-01-01.
Publisher
American Chemical Society (ACS)Journal
ACS PhotonicsAdditional Links
https://pubs.acs.org/doi/10.1021/acsphotonics.0c00269ae974a485f413a2113503eed53cd6c53
10.1021/acsphotonics.0c00269