Performance of Multibeam Very High Throughput Satellite Systems Based on FSO Feeder Links with HPA Nonlinearity

Abstract
Due to recent advances in laser satellite communications technology, free-space optical (FSO) links are presented as an ideal alternative to the conventional radio frequency (RF) feeder links of the geostationary satellite for next generation very high throughput satellite (VHTS) systems. In this paper, we investigate the performance of multibeam VHTS systems that account for nonlinear high power amplifiers at the transparent fixed gain satellite transponder. Specifically, we consider the forward link of such systems, where the RF user link is assumed to follow the shadowed Rician model and the FSO feeder link is modeled by the Gamma-Gamma distribution in the presence of beam wander and pointing errors where it operates under either the intensity modulation with direct detection or the heterodyne detection. Moreover, zero-forcing precoder is employed to mitigate the effect of inter-beam interference caused by the aggressive frequency reuse in the user link. The performance of the system under study is evaluated in terms of the outage probability, the average bit-error rate (BER), and the ergodic capacity that are derived in exact closed-forms in terms of the bivariate Meijer's G function. Simple asymptotic results for the outage probability and the average BER are also obtained at high signal-to-noise ratio.

Citation
Zedini, E., Kammoun, A., & Alouini, M.-S. (2020). Performance of Multibeam Very High Throughput Satellite Systems Based on FSO Feeder Links with HPA Nonlinearity. IEEE Transactions on Wireless Communications, 1–1. doi:10.1109/twc.2020.2998139

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Journal
IEEE Transactions on Wireless Communications

DOI
10.1109/TWC.2020.2998139
10.36227/techrxiv.12413384.v1

arXiv
2005.14218

Additional Links
https://arxiv.org/pdf/2005.14218http://arxiv.org/pdf/2005.14218

Permanent link to this record

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2020-06-07 13:19:50
published in journal
2020-06-07 06:04:03
* Selected version