• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Bacterial Endophytes from Pioneer Desert Plants for Sustainable Agriculture

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhD Thesis Dissertation_Abdul Aziz Eida_Summer 2020.pdf
    Size:
    8.113Mb
    Format:
    PDF
    Download
    View more filesView fewer files
    Type
    Dissertation
    Authors
    Eida, Abdul Aziz cc
    Advisors
    Hirt, Heribert cc
    Committee members
    Saad, Maged M.
    Pain, Arnab cc
    Aranda, Manuel cc
    Kopriva, Stanislav
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2020-06
    Embargo End Date
    2020-06-03
    Permanent link to this record
    http://hdl.handle.net/10754/663000
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2020-06-03.
    Abstract
    One of the major challenges for agricultural research in the 21st century is to increase crop productivity to meet the growing demand for food and feed. Biotic (e.g. plant pathogens) and abiotic stresses (e.g. soil salinity) have detrimental effects on agricultural productivity, with yield losses being as high as 60% for major crops such as barley, corn, potatoes, sorghum, soybean and wheat, especially in semi-arid regions such as Saudi Arabia. Plant growth promoting bacteria isolated from pioneer desert plants could serve as an eco-friendly, sustainable solution for improving plant growth, stress tolerance and health. In this dissertation, culture-independent amplicon sequencing of bacterial communities revealed how native desert plants influence their surrounding bacterial communities in a phylogeny-dependent manner. By culture-dependent isolation of the plant endosphere compartments and a number of bioassays, more than a hundred bacterial isolates with various biochemical properties, such as nutrient acquisition, hormone production and growth under stress conditions were obtained. From this collection, five phylogenetically diverse bacterial strains were able to promote the growth of the model plant Arabidopsis thaliana under salinity stress conditions in a common mechanism of inducing transcriptional changes of tissue-specific ion transporters and lowering Na+/K+ ratios in the shoots. By combining a number of in vitro bioassays, plant phenotyping and volatile-mediated inhibition assays with next-generation sequencing technology, gas chromatography–mass spectrometry and bioinformatics tools, a candidate strain was presented as a multi-stress tolerance promoting bacterium with potential use in agriculture. Since recent research showed the importance of microbial partners for enhancing the growth and health of plants, a review of the different factors influencing plant-associated microbial communities is presented and a framework for the successful application of microbial inoculants in agriculture is proposed. The presented work demonstrates a holistic approach for tackling agricultural challenges using microbial inoculants from desert plants by combining culturomics, phenomics, genomics and transcriptomics. Microbial inoculants are promising tools for studying abiotic stress tolerance mechanisms in plants, and they provide an eco-friendly solution for increasing crop yield in arid and semi-arid regions, especially in light of a dramatically growing human population and detrimental effects of global warming and climate change.
    Citation
    Eida, A. A. (2020). Bacterial Endophytes from Pioneer Desert Plants for Sustainable Agriculture. KAUST Research Repository. https://doi.org/10.25781/KAUST-E6YNE
    DOI
    10.25781/KAUST-E6YNE
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-E6YNE
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program; PhD Dissertations

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.