ZIF-induced d-band Modification in Bimetallic Nanocatalyst: Achieving >44% Efficiency in Ambient Nitrogen Reduction Reaction.
Type
ArticleAuthors
Sim, Howard Yi FanChen, Jaslyn Ru Ting
Koh, Charlynn Sher Lin
Lee, Hiang Kwee
Han, Xuemei
Phan-Quang, Gia Chuong
Pang, Jing Yi
Lay, Chee Leng
Pedireddy, Srikanth

Phang, In Yee
Yeow, Edwin Kok Lee
Ling, Xing Yi
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionWater Desalination and Reuse Research Center (WDRC)
Date
2020-07-27Online Publication Date
2020-07-27Print Publication Date
2020-09-21Embargo End Date
2021-05-29Submitted Date
2020-04-27Permanent link to this record
http://hdl.handle.net/10754/662985
Metadata
Show full item recordAbstract
Electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance due to preferential catalyst-H formation and the consequential hydrogen evolution reaction (HER). Herein, we electronically modify PtAu electrocatalyst d-band structure using zeolitic-imidazole framework (ZIF) to achieve a faradaic efficiency (FE) of >44% with high ammonia yield rate of >161 µg.mg cat -1 .h -1 at ambient conditions. Our strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron deficient sites to kinetically drive NRR by promoting catalyst-N 2 interaction. The ZIF coating on electrocatalyst doubles as a hydrophobic layer to suppress HER, further improves FE by >44-fold compared to without ZIF (~1%). Experimental and in-silico studies reveal PtAu-N ZIF interaction is key to enable strong N 2 adsorption over H atom. Our electrocatalytic design is universal and can be extended across metal electrocatalysts for diverse applications in NRR and air-to-fuel conversion.Citation
Sim, H. Y. F., Chen, J. R. T., Koh, C. S. L., Lee, H. K., Han, X., Phan-Quang, G. C., … Ling, X. Y. (2020). ZIF-induced d-band Modification in Bimetallic Nanocatalyst: Achieving >44% Efficiency in Ambient Nitrogen Reduction Reaction. Angewandte Chemie International Edition. doi:10.1002/anie.202006071Sponsors
This research is supported by the Ministry of Education, Singapore, under Tier 1 (RG11/18) and Tier 2 (MOE2016-T2-1-043) grants, and Max Planck Institute-Nanyang Technological University Joint Lab. H. Y. F. S., C. S. L. K. and G. C. P-Q. thank scholarship support from Nanyang Technological University, Singapore. J. R. T. C. and J. Y. P. thank CN Yang scholarship. H. K. L. thanks the International Postdoctoral Scholarship support from Nanyang Technological University, Singapore, and Singapore Ministry of Education. We thank Mr. Poh Chong Lim, A*STAR, for XRD analysis.Publisher
WileyJournal
Angewandte ChemiePubMed ID
32463536Additional Links
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202006071ae974a485f413a2113503eed53cd6c53
10.1002/anie.202006071
Scopus Count
Related articles
- Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation.
- Authors: Yang Y, Wang SQ, Wen H, Ye T, Chen J, Li CP, Du M
- Issue date: 2019 Oct 21
- Oxygen Vacancy Engineering of MOF-Derived Zn-Doped Co(3)O(4) Nanopolyhedrons for Enhanced Electrochemical Nitrogen Fixation.
- Authors: Wen L, Li X, Zhang R, Liang H, Zhang Q, Su C, Zeng YJ
- Issue date: 2021 Mar 31
- Assembly of Hydrophobic ZIF-8 on CeO(2) Nanorods as High-Efficiency Catalyst for Electrocatalytic Nitrogen Reduction Reaction.
- Authors: Liu Y, Meng X, Zhao Z, Li K, Lin Y
- Issue date: 2022 Aug 27
- Three-Phase Electrolysis by Gold Nanoparticle on Hydrophobic Interface for Enhanced Electrochemical Nitrogen Reduction Reaction.
- Authors: Zhang J, Zhao B, Liang W, Zhou G, Liang Z, Wang Y, Qu J, Sun Y, Jiang L
- Issue date: 2020 Nov
- Unsaturated p-Metal-Based Metal-Organic Frameworks for Selective Nitrogen Reduction under Ambient Conditions.
- Authors: Fu Y, Li K, Batmunkh M, Yu H, Donne S, Jia B, Ma T
- Issue date: 2020 Oct 7