Show simple item record

dc.contributor.authorHe, Xin
dc.contributor.authorWen, Yan
dc.contributor.authorZhang, Chenhui
dc.contributor.authorLai, Zhiping
dc.contributor.authorChudnovsky, Eugene M
dc.contributor.authorZhang, Xixiang
dc.date.accessioned2020-06-03T05:23:49Z
dc.date.available2020-06-03T05:23:49Z
dc.date.issued2020
dc.date.submitted2020-05-20
dc.identifier.citationHe, X., Wen, Y., Zhang, C., Lai, Z., Chudnovsky, E. M., & Zhang, X. (2020). Enhancement of critical current density in a superconducting NbSe2 step junction. Nanoscale. doi:10.1039/d0nr03902k
dc.identifier.issn2040-3364
dc.identifier.pmid32478360
dc.identifier.doi10.1039/d0nr03902k
dc.identifier.urihttp://hdl.handle.net/10754/662980
dc.description.abstractWe investigate the transport properties of a NbSe2 nanodevice consisting of a thin region, a thick region and a step junction. The superconducting critical current density of each region of the nanodevice has been studied as a function of temperature and magnetic field. We find that the critical current density has similar values for both the thin and thick regions away from the junction, while the critical current density of the thin region of the junction increases to approximately 1.8 times as compared with the values obtained for the other regions. We attribute such an enhancement of critical current density to the vortex pinning at the surface step. Our study verifies the enhancement of the critical current density by the geometrical-type pinning and sheds light on the application of 2D superconductors.
dc.description.sponsorshipThis publication is based on research supported by the King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under the Award No. URF/1/3435-01-01 and OSR-2016-CRG5-2977.
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.urlhttp://xlink.rsc.org/?DOI=D0NR03902K
dc.rightsArchived with thanks to Nanoscale
dc.titleEnhancement of critical current density in a superconducting NbSe2 step junction.
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentChemical Engineering Program
dc.contributor.departmentMaterial Science and Engineering
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalNanoscale
dc.rights.embargodate2021-06-02
dc.eprint.versionPost-print
dc.contributor.institutionPhysics Department, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589, USA.
kaust.personHe, Xin
kaust.personWen, Yan
kaust.personZhang, Chenhui
kaust.personLai, Zhiping
kaust.personZhang, Xixiang
kaust.grant.numberOSR-2016-CRG5-2977
kaust.grant.numberURF/1/3435
dc.date.accepted2020-05-25
refterms.dateFOA2020-12-14T06:47:29Z
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)


Files in this item

Thumbnail
Name:
enhancement of.pdf
Size:
1.278Mb
Format:
PDF
Description:
Accepted manuscript
Thumbnail
Name:
enhancement of SI.docx
Size:
234.2Kb
Format:
Unknown
Description:
supplementary file

This item appears in the following Collection(s)

Show simple item record