Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales
Name:
IJCK_paper_revised_version (1).pdf
Size:
593.4Kb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2021-05-22
Type
ArticleKAUST Department
Chemical Engineering ProgramClean Combustion Research Center
Combustion and Pyrolysis Chemistry (CPC) Group
Computational Reacting Flow Laboratory (CRFL)
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2020-05-22Online Publication Date
2020-05-22Print Publication Date
2020-09Embargo End Date
2021-05-22Submitted Date
2019-12-20Permanent link to this record
http://hdl.handle.net/10754/662931
Metadata
Show full item recordAbstract
Detailed gas-phase chemical kinetic models are widely used in combustion research, and many new mechanisms for different fuels and reacting conditions are developed each year. Recent works have highlighted the need for error checking when preparing such models, but a useful community tool to perform such analysis is missing. In this work, we present a simple online tool to screen chemical kinetic mechanisms for bimolecular reactions exceeding collision limits. The tool is implemented on a user-friendly website, cloudflame.kaust.edu.sa, and checks three different classes of bimolecular reactions; (ie, pressure independent, pressure-dependent falloff, and pressure-dependent PLOG). In addition, two other online modules are provided to check thermodynamic properties and transport parameters to help kinetic model developers determine the sources of errors for reactions that are not collision limit compliant. Furthermore, issues related to unphysically fast timescales can remain an issue even if all bimolecular reactions are within collision limits. Therefore, we also present a procedure to screen ultrafast reaction timescales using computational singular perturbation. For demonstration purposes only, three versions of the rigorously developed AramcoMech are screened for collision limit compliance and ultrafast timescales, and recommendations are made for improving the models. Larger models for biodiesel surrogates, tetrahydropyran, and gasoline surrogates are also analyzed for exemplary purposes. Numerical simulations with updated kinetic parameters are presented to show improvements in wall-clock time when resolving ultrafast timescales.Citation
Yalamanchi, K. K., Tingas, E., Im, H. G., & Sarathy, S. M. (2020). Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales. International Journal of Chemical Kinetics. doi:10.1002/kin.21373Sponsors
This work was supported by the Clean Combustion ResearchCenter at the King Abdullah University of Science and Technology (KAUST).Publisher
WileyAdditional Links
https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.21373ae974a485f413a2113503eed53cd6c53
10.1002/kin.21373