Show simple item record

dc.contributor.authorZhang, Wenli
dc.contributor.authorYin, Jian
dc.contributor.authorSun, Minglei
dc.contributor.authorWang, Wenxi
dc.contributor.authorChen, Cailing
dc.contributor.authorAltunkaya, Mustafa
dc.contributor.authorEmwas, Abdul-Hamid M.
dc.contributor.authorHan, Yu
dc.contributor.authorSchwingenschlögl, Udo
dc.contributor.authorAlshareef, Husam N.
dc.date.accessioned2020-05-17T10:45:46Z
dc.date.available2020-05-17T10:45:46Z
dc.date.issued2020-05-14
dc.date.submitted2020-02-01
dc.identifier.citationZhang, W., Yin, J., Sun, M., Wang, W., Chen, C., Altunkaya, M., … Alshareef, H. N. (2020). Direct Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries. Advanced Materials, 2000732. doi:10.1002/adma.202000732
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.pmid32410270
dc.identifier.doi10.1002/adma.202000732
dc.identifier.urihttp://hdl.handle.net/10754/662843
dc.description.abstractMost reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g-1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries.
dc.description.sponsorshipThe research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST). The authors thank the Core Laboratories at KAUST for their excellent support.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202000732
dc.rightsArchived with thanks to Advanced Materials
dc.titleDirect Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentChemical Science Program
dc.contributor.departmentComputational Physics and Materials Science (CPMS)
dc.contributor.departmentFunctional Nanomaterials and Devices Research Group
dc.contributor.departmentInorganics
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentNMR
dc.contributor.departmentNanostructured Functional Materials (NFM) laboratory
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Materials
dc.rights.embargodate2021-05-15
dc.eprint.versionPost-print
dc.identifier.pages2000732
kaust.personZhang, Wenli
kaust.personYin, Jian
kaust.personSun, Minglei
kaust.personWang, Wenxi
kaust.personChen, Cailing
kaust.personAltunkaya, Mustafa
kaust.personEmwas, Abdul-Hamid M.
kaust.personHan, Yu
kaust.personSchwingenschlögl, Udo
kaust.personAlshareef, Husam N.
dc.date.accepted2020-04-23
kaust.acknowledged.supportUnitCore Laboratories at KAUST
dc.date.published-online2020-05-14
dc.date.published-print2020-06


Files in this item

Thumbnail
Name:
Direct Prolysis.pdf
Size:
2.445Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record