Show simple item record

dc.contributor.authorLi, Renyuan
dc.contributor.authorShi, Yusuf
dc.contributor.authorWu, Mengchun
dc.contributor.authorHong, Seunghyun
dc.contributor.authorWang, Peng
dc.date.accessioned2020-05-13T07:35:23Z
dc.date.available2020-05-13T07:35:23Z
dc.date.issued2020-05-11
dc.date.submitted2019-01-11
dc.identifier.citationLi, R., Shi, Y., Wu, M., Hong, S., & Wang, P. (2020). Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nature Sustainability. doi:10.1038/s41893-020-0535-4
dc.identifier.issn2398-9629
dc.identifier.doi10.1038/s41893-020-0535-4
dc.identifier.urihttp://hdl.handle.net/10754/662817
dc.description.abstractMore than 600 GW of photovoltaic panels are currently installed worldwide, with the predicted total capacity increasing very rapidly every year. One essential issue in photovoltaic conversion is the massive heat generation of photovoltaic panels under sunlight, which represents 75–96% of the total absorbed solar energy and thus greatly increases the temperature and decreases the energy efficiency and lifetime of photovoltaic panels. In this report we demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component. The atmospheric water harvester photovoltaic cooling system provides an average cooling power of 295 W m–2 and lowers the temperature of a photovoltaic panel by at least 10 °C under 1.0 kW m–2 solar irradiation in laboratory conditions. It delivered a 13–19% increase in electricity generation in a commercial photovoltaic panel in outdoor field tests conducted in the winter and summer in Saudi Arabia. The atmospheric water harvester based photovoltaic panel cooling strategy has little geographical constraint in terms of its application and has the potential to improve the electricity production of existing and future photovoltaic plants, which can be directly translated into less CO2 emission or less land occupation by photovoltaic panels. As solar power is taking centre stage in the global fight against climate change, atmospheric water harvester based cooling represents an important step toward sustainability.
dc.description.sponsorshipThis work was supported by the King Abdullah University of Science and Technology (KAUST) Center Competitive Fund (CCF), awarded to the Water Desalination and Reuse Center (WDRC).
dc.publisherSpringer Nature
dc.relation.urlhttp://www.nature.com/articles/s41893-020-0535-4
dc.rightsArchived with thanks to Nature Sustainability
dc.titlePhotovoltaic panel cooling by atmospheric water sorption–evaporation cycle
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Nanotechnology Lab
dc.contributor.departmentEnvironmental Science and Engineering
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentWater Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalNature Sustainability
dc.rights.embargodate2020-11-11
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
kaust.personLi, Renyuan
kaust.personShi, Yusuf
kaust.personWu, Mengchun
kaust.personHong, Seunghyun
kaust.personWang, Peng
dc.date.accepted2020-04-06
refterms.dateFOA2020-05-13T12:25:30Z
kaust.acknowledged.supportUnitCCF
kaust.acknowledged.supportUnitWater Desalination and Reuse Center (WDRC)
dc.date.published-online2020-05-11
dc.date.published-print2020-08


Files in this item

Thumbnail
Name:
Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle.pdf
Size:
1.357Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record