A PMU-Based Machine Learning Application for Fast Detection of Forced Oscillations from Wind Farms
dc.contributor.author | Ayachi, Mohammed Ilies | |
dc.contributor.author | Vanfretti, Luigi | |
dc.contributor.author | Ahmed, Shehab | |
dc.date.accessioned | 2020-04-26T14:59:10Z | |
dc.date.available | 2020-04-26T14:59:10Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Mohammed-Ilies Ayachi, Luigi Vanfretti, Shehab Ahmed, “A PMU-Based Machine Learning Application for Fast Detection of Forced Oscillations from Wind Farms”, Saudi Smart Grid Conference 2019, 2019. | |
dc.identifier.uri | http://hdl.handle.net/10754/662642 | |
dc.description.abstract | Today’s evolving power system contains an increasing amount of power electronic interfaced energy sources and loads that require a paradigm shift in utility operations. Subsynchronous oscillations at frequencies around 13-15 Hz, for instance, have been reported by utilities due to wind farm controller interactions with the grid. Dynamics at such frequencies are unobservable by most SCADA tools due to low sampling frequencies and lack of synchronization. Real-time or off-line frequency domain analysis of phasor measurement unit (PMU) data has become a valuable method to identify such phenomena, at the expense of costly power system data and communication infrastructure. This article proposes an alternative machine learning (ML) based application for sub-synchronous oscillation detection in wind farm applications. The application is targeted for real-time implementation at the ‘edge’, resulting in significant savings in terms of data and communication requirements. Validation is performed using data from a North American wind farm operator. | |
dc.publisher | SASG | |
dc.relation.url | https://ecse.rpi.edu/~vanfrl/documents/publications/conference/2019/CP165_KAUST_ML_ForcedOscillations.pdf | |
dc.relation.url | https://sasg2019.com/en/ | |
dc.rights | Archived with thanks to SASG | |
dc.title | A PMU-Based Machine Learning Application for Fast Detection of Forced Oscillations from Wind Farms | |
dc.type | Conference Paper | |
dc.contributor.department | Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC) | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.conference.date | December 10-12, 2019 | |
dc.conference.name | Saudi Smart Grid Conference 2019 | |
dc.conference.location | Jeddah, Saudi Arabia | |
dc.eprint.version | Post-print | |
dc.contributor.institution | Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, USA | |
pubs.publication-status | Accepted | |
kaust.person | Ayachi, Mohammed Ilies | |
kaust.person | Ahmed, Shehab | |
dc.date.accepted | 2019 | |
refterms.dateFOA | 2020-04-26T14:59:11Z |
Files in this item
This item appears in the following Collection(s)
-
Conference Papers
-
Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/