633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress
Type
ArticleAuthors
Iida, Daisuke
Zhuang, Zhe

Kirilenko, Pavel
Velazquez-Rizo, Martin

Najmi, Mohammed A.
Ohkawa, Kazuhiro

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering
Electrical Engineering Program
Date
2020-04-20Submitted Date
2019-12-14Permanent link to this record
http://hdl.handle.net/10754/662608
Metadata
Show full item recordAbstract
This work investigates the influence of residual stress on the performance of InGaN-based red light-emitting diodes (LEDs) by changing the thickness of the underlying n-GaN layers. The residual in-plane stress in the LED structure depends on the thickness of the underlying layer. Decreased residual in-plane stress resulting from the increased thickness of the underlying n-GaN layers improves the crystalline quality of the InGaN active region by allowing for a higher growth temperature. The electroluminescence intensity of the InGaN-based red LEDs is increased by a factor of 1.3 when the thickness of the underlying n-GaN layer is increased from 2 to 8 lm. Using 8-lm-thick underlying n-GaN layers, 633-nm-wavelength red LEDs are realized with a light-output power of 0.64 mW and an external quantum efficiency of 1.6% at 20 mA. The improved external quantum efficiency of the LEDs can be attributed to the lower residual in-plane stress in the underlying GaN layers.Citation
Iida, D., Zhuang, Z., Kirilenko, P., Velazquez-Rizo, M., Najmi, M. A., & Ohkawa, K. (2020). 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Applied Physics Letters, 116(16), 162101. doi:10.1063/1.5142538Publisher
AIP PublishingJournal
Applied Physics LettersAdditional Links
http://aip.scitation.org/doi/10.1063/1.5142538https://aip.scitation.org/doi/pdf/10.1063/1.5142538
ae974a485f413a2113503eed53cd6c53
10.1063/1.5142538
Scopus Count
Except where otherwise noted, this item's license is described as All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY).