• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    5904315.pdf
    Size:
    1.393Mb
    Format:
    PDF
    Description:
    Published version
    Download
    Type
    Article
    Authors
    Essack, Magbubah cc
    Salhi, Adil
    Van Neste, Christophe Marc cc
    Raies, Arwa B. cc
    Tifratene, Faroug cc
    Uludag, Mahmut cc
    Hungler, Arnaud cc
    Zaric, Bozidarka
    Zafirovic, Sonja cc
    Gojobori, Takashi cc
    Isenovic, Esma cc
    Bajic, Vladan P.
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Bioscience Program
    Computational Bioscience Research Center (CBRC)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
    KAUST Grant Number
    BAS/1/1606-01-01
    FCC/1/1976-17-01
    OSR#4129
    Date
    2020-03-28
    Submitted Date
    2020-01-09
    Permanent link to this record
    http://hdl.handle.net/10754/662427
    
    Metadata
    Show full item record
    Abstract
    Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.
    Citation
    Essack, M., Salhi, A., Van Neste, C., Raies, A. B., Tifratene, F., Uludag, M., … Bajic, V. P. (2020). DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases. Oxidative Medicine and Cellular Longevity, 2020, 1–13. doi:10.1155/2020/5904315
    Sponsors
    This work is part of the collaboration between the Laboratory of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia, and King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia. This work has been supported by grants 173033 (EI) and 173034 (VPB) from the Ministry of Education, Science and Technological Development, Republic of Serbia, and by the KAUST Office of Sponsored Research (OSR) grant OSR#4129 (to EI and VPB). VPB has been supported by the KAUST Base Research Fund (BAS/1/1606-01-01), while ME has been supported by KAUST OSR grant no. FCC/1/1976-17-01. TG has been supported by the King Abdullah University of Science and Technology (KAUST) Base Research Fund (BAS/1/1059-01-01). This article is dedicated to the memory of our coauthor, colleague, and world-class leader and researcher in his field, Professor Vladimir Bajic, who passed away after a valiant battle against lymphatic cancer on 31 October 2019.
    Publisher
    Hindawi Limited
    Journal
    Oxidative Medicine and Cellular Longevity
    DOI
    10.1155/2020/5904315
    Additional Links
    https://www.hindawi.com/journals/omcl/2020/5904315/
    ae974a485f413a2113503eed53cd6c53
    10.1155/2020/5904315
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program; Computational Bioscience Research Center (CBRC); Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.