Show simple item record

dc.contributor.authorRagheb, Amr
dc.contributor.authorSaif, Waddah
dc.contributor.authorTrichili, Abderrahmen
dc.contributor.authorAshry, Islam
dc.contributor.authorEsmail, Maged Abdullah
dc.contributor.authorAltamimi, Majid
dc.contributor.authorAlmaiman, Ahmed
dc.contributor.authorAltubaishi, Essam
dc.contributor.authorOoi, Boon S.
dc.contributor.authorAlouini, Mohamed-Slim
dc.contributor.authorAlshebeili, Saleh
dc.date.accessioned2020-03-25T07:39:00Z
dc.date.available2020-03-25T07:39:00Z
dc.date.issued2020-03-20
dc.date.submitted2020-01-28
dc.identifier.citationRagheb, A., Saif, W., Trichili, A., Ashry, I., Esmail, M. A., Altamimi, M., … Alshebeili, S. (2020). Identifying structured light modes in a desert environment using machine learning algorithms. Optics Express, 28(7), 9753. doi:10.1364/oe.389210
dc.identifier.doi10.1364/oe.389210
dc.identifier.urihttp://hdl.handle.net/10754/662291
dc.description.abstractThe unique orthogonal shapes of structured light beams have attracted researchers to use as information carriers. Structured light-based free space optical communication is subject to atmospheric propagation effects such as rain, fog, and rain, which complicate the mode demultiplexing process using conventional technology. In this context, we experimentally investigate the detection of Laguerre Gaussian and Hermite Gaussian beams under dust storm conditions using machine learning algorithms. Different algorithms are employed to detect various structured light encoding schemes including the use of a convolutional neural network (CNN), support vector machine, and k-nearest neighbor. We report an identification accuracy of 99% under a visibility level of 9 m. The CNN approach is further used to estimate the visibility range of a dusty communication channel.
dc.description.sponsorshipDeanship of Scientific Research, King Saud University (grant no. RG-1440-112); King Abdullah University of Science and Technology (KKI2 special initiative)
dc.publisherThe Optical Society
dc.relation.urlhttps://www.osapublishing.org/abstract.cfm?URI=oe-28-7-9753
dc.rightsArchived with thanks to Optics Express
dc.rights.urihttps://doi.org/10.1364/OA_License_v1
dc.titleIdentifying structured light modes in a desert environment using machine learning algorithms
dc.typeArticle
dc.contributor.departmentCommunication Theory Lab
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentPhotonics Laboratory
dc.identifier.journalOptics Express
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionKACST-TIC in Radio Frequency and Photonics for the e-Society, King Saud University, Riyadh 11421, Saudi Arabia.
dc.contributor.institutionDepartment of Electrical Engineering, King Saud University, Riyadh 11421, Saudi Arabia
dc.contributor.institutionCommunications and Networks Engineering Department, Faculty of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
kaust.personTrichili, Abderrahmen
kaust.personAshry, Islam
kaust.personOoi, Boon S.
kaust.personAlouini, Mohamed-Slim
dc.date.accepted2020-03-12
refterms.dateFOA2020-03-25T07:40:58Z
dc.date.published-online2020-03-20
dc.date.published-print2020-03-30


Files in this item

Thumbnail
Name:
oe-28-7-9753.pdf
Size:
2.730Mb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record