Show simple item record

dc.contributor.authorFernández, David C. Del Rey
dc.contributor.authorCarpenter, Mark H.
dc.contributor.authorDalcin, Lisandro
dc.contributor.authorZampini, Stefano
dc.contributor.authorParsani, Matteo
dc.date.accessioned2020-03-18T11:41:21Z
dc.date.available2020-03-18T11:41:21Z
dc.date.issued2020-03-16
dc.date.submitted2019-10-04
dc.identifier.citationFernández, D. C. D. R., Carpenter, M. H., Dalcin, L., Zampini, S., & Parsani, M. (2020). Entropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier–Stokes equations. SN Partial Differential Equations and Applications, 1(2). doi:10.1007/s42985-020-00009-z
dc.identifier.doi10.1007/s42985-020-00009-z
dc.identifier.urihttp://hdl.handle.net/10754/662193
dc.description.abstractIn this paper, the entropy conservative/stable algorithms presented by Del Rey Fernandez and coauthors [18,16,17] for the compressible Euler and Navier-Stokes equations on nonconforming p-refined/coarsened curvilinear grids is extended to h/p refinement/coarsening. The main difficulty in developing nonconforming algorithms is the construction of appropriate coupling procedures across nonconforming interfaces. Here, a computationally simple and efficient approach based upon using decoupled interpolation operators is utilized. The resulting scheme is entropy conservative/stable and element-wise conservative. Numerical simulations of the isentropic vortex and viscous shock propagation confirm the entropy conservation/stability and accuracy properties of the method (achieving ~ p + 1 convergence) which are comparable to those of the original conforming scheme [4,35]. Simulations of the Taylor-Green vortex at Re = 1,600 and turbulent flow past a sphere at Re = 2,000 show the robustness and stability properties of the overall spatial discretization for unstructured grids. Finally, to demonstrate the entropy conservation property of a fully-discrete explicit entropy stable algorithm with h/p refinement/coarsening, we present the time evolution of the entropy function obtained by simulating the propagation of the isentropic vortex using a relaxation Runge-Kutta scheme.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). We are thankful for the computing resources of the Supercomputing Laboratory and the Extreme Computing Research Center at KAUST. Special thanks are extended to Dr. Mujeeb R. Malik for supporting this work as part of NASA’s “Transformational Tools and Technologies” (T3) project.
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/10.1007/s42985-020-00009-z
dc.rightsArchived with thanks to SN Partial Differential Equations and Applications
dc.titleEntropy stable h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler and Navier–Stokes equations
dc.typeArticle
dc.contributor.departmentExtreme Computing Research Center
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalSN Partial Differential Equations and Applications
dc.eprint.versionPre-print
dc.contributor.institutionNational Institute of Aerospace and Computational AeroSciences Branch, NASA Langley Research Center, Hampton, VA, USA
dc.contributor.institutionNASA Langley Research Center, Hampton, VA, USA
dc.identifier.arxivid1910.02110
kaust.personDalcin, Lisandro
kaust.personZampini, Stefano
kaust.personParsani, Matteo
dc.date.accepted2020-02-13
refterms.dateFOA2020-03-23T13:36:25Z
dc.date.published-online2020-03-16
dc.date.published-print2020-04
dc.date.posted2019-10-04


Files in this item

Thumbnail
Name:
hp_entropy_sn_revision.pdf
Size:
2.084Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record