• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A Hierarchical Bayesian Model for Differential Connectivity in Multi-trial Brain Signals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    A%20Hierarchical%20Bayesian%20Model%20for%20Differential%20Connectivity.pdf
    Size:
    5.483Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Hu, Lechuan
    Guindani, Michele
    Fortin, Norbert J.
    Ombao, Hernando cc
    KAUST Department
    Biostatistics Group
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Statistics Program
    Date
    2020
    Embargo End Date
    2022-03-16
    Submitted Date
    2019
    Permanent link to this record
    http://hdl.handle.net/10754/662151
    
    Metadata
    Show full item record
    Abstract
    There is a strong interest in the neuroscience community to measure brain connectivity and develop methods that can differentiate connectivity across patient groups and across different experimental stimuli. The development of such statistical tools is critical to understand the dynamics of functional relationships among brain structures supporting memory encoding and retrieval. However, challenges arise by providing from the need to incorporate within-condition similarity with between-conditions heterogeneity in modeling connectivity, as well as how to provide a natural way to conduct trial- and condition-level inference on effective connectivity. A Bayesian hierarchical vector autoregressive (BH-VAR) model is proposed to characterize brain connectivity and infer differences in connectivity across conditions. Within-condition connectivity similarity and between-conditions connectivity heterogeneity are accounted for by the priors on trial-specific models. In addition to the fully Bayesian framework, an alternative two-stage computational approach is also proposed which still allows straightforward uncertainty quantification of between-trial conditions via MCMC posterior sampling, but provides a fast approximate procedure for the estimation of trial-specific VAR parameters. A novel aspect of the approach is the use of a frequency-specific measure, partial directed coherence (PDC), to characterize effective connectivity under the Bayesian framework. More specifically, PDC allows inferring directionality and explaining the extent to which the present oscillatory activity at a certain frequency in a sender channel influences the future oscillatory activity in a specific receiver channel relative to all possible receivers in the brain network. The proposed model is applied to a large electrophysiological dataset collected as rats performed a complex sequence memory task. This unique dataset includes local field potentials (LFPs) activity recorded from an array of electrodes across the hippocampal region CA1 while animals were presented with multiple trials from two main conditions. The proposed modeling approach provided novel insights into hippocampal connectivity during memory performance. Specifically, it separated CA1 into two functional units, a lateral and a medial segment, each showing stronger functional connectivity to itself than to the other. This approach also revealed that information primarily flowed in a lateral-to-medial direction across trials (within-condition), and suggested this effect was stronger on one trial condition than the other (between-conditions effect). Collectively, these results indicate that the proposed model is a promising approach to quantify the variation of functional connectivity, both within- and between-conditions, and thus should have broad applications in neuroscience research.
    Citation
    Hu, L., Guindani, M., Fortin, N. J., & Ombao, H. (2020). A hierarchical bayesian model for differential connectivity in multi-trial brain signals. Econometrics and Statistics, 15, 117–135. doi:10.1016/j.ecosta.2020.03.009
    Sponsors
    N.J. Fortin’s research was supported in part by NIH grants R01-MH115697 and R01-DC017687, NSF awards IOS- 1150292 and BCS-1439267, and Whitehall Foundation award 2010-05-84. M. Guindani was supported by the NSF grant SES-1659921. H. Ombao was supported in part by the NIH grant R01MH115697 and the KAUST Fund.
    Publisher
    Elsevier BV
    Journal
    Econometrics and Statistics
    DOI
    10.1016/j.ecosta.2020.03.009
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.ecosta.2020.03.009
    Scopus Count
    Collections
    Articles; Statistics Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.