Laser-Printed, Flexible Graphene Pressure Sensors

Abstract
While the outstanding properties of graphene have attracted a lot of attention, one of the major bottlenecks of its widespread usage is its availability in large volumes. Laser printing graphene on polyimide films is an efficient single-step fabrication process that can remedy this issue. A laser-printed, flexible pressure sensor is developed utilizing the piezoresistive effect of 3D porous graphene. The pressure sensors performance can be easily adjusted via the geometrical parameters. They have a sensitivity in the range of 1.23 × 10−3 kPa and feature a high resolution with a detection limit of 10 Pa in combination with an extremely wide dynamic range of at least 20 MPa. They also provide excellent long-term stability of at least 15 000 cycles. The biocompatibility of laser-induced graphene is also evaluated by cytotoxicity assays and fluorescent staining, which show an insignificant drop in viability. Polymethyl methacrylate coating is particularly useful for underwater applications, protecting the sensors from biofouling and shunt currents, and enable operation at a depth of 2 km in highly saline Red Sea water. Due to its features, the sensors are a prime choice for multiple healthcare applications; for example, they are used for heart rate monitoring, plantar pressure measurements, and tactile sensing.

Citation
Kaidarova, A., Alsharif, N., Oliveira, B. N. M., Marengo, M., Geraldi, N. R., Duarte, C. M., & Kosel, J. (2020). Laser-Printed, Flexible Graphene Pressure Sensors. Global Challenges, 2000001. doi:10.1002/gch2.202000001

Acknowledgements
This research was a contribution to the CAASE project funded by King Abdullah University of Science and Technology (KAUST) under the KAUST Sensor Initiative.

Publisher
Wiley

Journal
Global Challenges

DOI
10.1002/gch2.202000001

Additional Links
https://onlinelibrary.wiley.com/doi/abs/10.1002/gch2.202000001

Permanent link to this record