Name:
Kaidarova_et_al-2020-Global_Challenges.pdf
Size:
1.713Mb
Format:
PDF
Description:
Published version
Type
ArticleAuthors
Kaidarova, Altynay
Alsharif, Nouf

Oliveira, Barbara Nicoly M.
Marengo, Marco
Geraldi, Nathan
Duarte, Carlos M.

Kosel, Jürgen

KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionBioscience Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering
Electrical Engineering Program
Marine Science Program
Red Sea Research Center (RSRC)
Sensing, Magnetism and Microsystems Lab
Date
2020-03-11Online Publication Date
2020-03-11Print Publication Date
2020-04Submitted Date
2020-01-07Permanent link to this record
http://hdl.handle.net/10754/662112
Metadata
Show full item recordAbstract
While the outstanding properties of graphene have attracted a lot of attention, one of the major bottlenecks of its widespread usage is its availability in large volumes. Laser printing graphene on polyimide films is an efficient single-step fabrication process that can remedy this issue. A laser-printed, flexible pressure sensor is developed utilizing the piezoresistive effect of 3D porous graphene. The pressure sensors performance can be easily adjusted via the geometrical parameters. They have a sensitivity in the range of 1.23 × 10−3 kPa and feature a high resolution with a detection limit of 10 Pa in combination with an extremely wide dynamic range of at least 20 MPa. They also provide excellent long-term stability of at least 15 000 cycles. The biocompatibility of laser-induced graphene is also evaluated by cytotoxicity assays and fluorescent staining, which show an insignificant drop in viability. Polymethyl methacrylate coating is particularly useful for underwater applications, protecting the sensors from biofouling and shunt currents, and enable operation at a depth of 2 km in highly saline Red Sea water. Due to its features, the sensors are a prime choice for multiple healthcare applications; for example, they are used for heart rate monitoring, plantar pressure measurements, and tactile sensing.Citation
Kaidarova, A., Alsharif, N., Oliveira, B. N. M., Marengo, M., Geraldi, N. R., Duarte, C. M., & Kosel, J. (2020). Laser-Printed, Flexible Graphene Pressure Sensors. Global Challenges, 2000001. doi:10.1002/gch2.202000001Sponsors
This research was a contribution to the CAASE project funded by King Abdullah University of Science and Technology (KAUST) under the KAUST Sensor Initiative.Publisher
WileyJournal
Global ChallengesAdditional Links
https://onlinelibrary.wiley.com/doi/abs/10.1002/gch2.202000001ae974a485f413a2113503eed53cd6c53
10.1002/gch2.202000001
Scopus Count
Collections
Articles; Biological and Environmental Science and Engineering (BESE) Division; Red Sea Research Center (RSRC); Bioscience Program; Marine Science Program; Electrical and Computer Engineering Program; Sensing, Magnetism and Microsystems Lab; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
Except where otherwise noted, this item's license is described as This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.