Show simple item record

dc.contributor.authorElhoseiny, Mohamed
dc.contributor.authorElfeki, Mohamed
dc.date.accessioned2020-03-05T11:08:45Z
dc.date.available2020-03-05T11:08:45Z
dc.date.issued2019
dc.identifier.citationElhoseiny, M., & Elfeki, M. (2019). Creativity Inspired Zero-Shot Learning. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2019.00588
dc.identifier.doi10.1109/ICCV.2019.00588
dc.identifier.urihttp://hdl.handle.net/10754/661916
dc.description.abstractZero-shot learning (ZSL) aims at understanding unseen categories with no training examples from class-level descriptions. To improve the discriminative power of zero-shot learning, we model the visual learning process of unseen categories with an inspiration from the psychology of human creativity for producing novel art. We relate ZSL to human creativity by observing that zero-shot learning is about recognizing the unseen and creativity is about creating a likable unseen. We introduce a learning signal inspired by creativity literature that explores the unseen space with hallucinated class-descriptions and encourages careful deviation of their visual feature generations from seen classes while allowing knowledge transfer from seen to unseen classes. Empirically, we show consistent improvement over the state of the art of several percents on the largest available benchmarks on the challenging task or generalized ZSL from a noisy text that we focus on, using the CUB and NABirds datasets. We also show the advantage of our loss on Attribute-based ZSL on three additional datasets (AwA2, aPY, and SUN). Code is available at https://github.com/mhelhoseiny/CIZSL.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttp://openaccess.thecvf.com/content_ICCV_2019/html/Elhoseiny_Creativity_Inspired_Zero-Shot_Learning_ICCV_2019_paper.html
dc.relation.urlhttps://ieeexplore.ieee.org/document/9009042/
dc.relation.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9009042
dc.rightsArchived with thanks to IEEE and the CVF.
dc.titleCreativity Inspired Zero-Shot Learning
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.conference.date27 Oct.-2 Nov. 2019
dc.conference.name2019 IEEE/CVF International Conference on Computer Vision (ICCV)
dc.conference.locationSeoul, Korea (South)
dc.eprint.versionPost-print
dc.contributor.institutionCRCV
dc.contributor.institutionBaidu
dc.identifier.arxivid1904.01109
kaust.personElhoseiny, Mohamed
dc.relation.issupplementedbygithub:mhelhoseiny/CIZSL
refterms.dateFOA2020-03-05T12:25:09Z
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Software]</i> <br/> Title: mhelhoseiny/CIZSL: Creativity Inspired Zero-Shot Learning. Publication Date: 2019-08-17. github: <a href="https://github.com/mhelhoseiny/CIZSL" >mhelhoseiny/CIZSL</a> Handle: <a href="http://hdl.handle.net/10754/668074" >10754/668074</a></a></li></ul>


Files in this item

Thumbnail
Name:
Elhoseiny_Creativity_Inspired_Zero-Shot_Learning_ICCV_2019_paper.pdf
Size:
981.8Kb
Format:
PDF
Description:
Accepted Manuscript
Thumbnail
Name:
Elhoseiny_Creativity_Inspired_Zero-Shot_ICCV_2019_supplemental.pdf
Size:
2.484Mb
Format:
PDF
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record