Show simple item record

dc.contributor.authorMohamed, Abduallah
dc.contributor.authorQian, Kun
dc.contributor.authorElhoseiny, Mohamed
dc.contributor.authorClaudel, Christian
dc.date.accessioned2020-03-04T08:14:30Z
dc.date.available2020-03-04T08:14:30Z
dc.date.issued2020-08-05
dc.identifier.citationMohamed, A., Qian, K., Elhoseiny, M., & Claudel, C. (2020). Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr42600.2020.01443
dc.identifier.isbn978-1-7281-7169-2
dc.identifier.issn1063-6919
dc.identifier.doi10.1109/CVPR42600.2020.01443
dc.identifier.urihttp://hdl.handle.net/10754/661865
dc.description.abstractBetter machine understanding of pedestrian behaviors enables faster progress in modeling interactions between agents such as autonomous vehicles and humans. Pedestrian trajectories are not only influenced by the pedestrian itself but also by interaction with surrounding objects. Previous methods modeled these interactions by using a variety of aggregation methods that integrate different learned pedestrians states. We propose the Social Spatio-Temporal Graph Convolutional Neural Network (Social-STGCNN), which substitutes the need of aggregation methods by modeling the interactions as a graph. Our results show an improvement over the state of art by 20% on the Final Displacement Error (FDE) and an improvement on the Average Displacement Error (ADE) with 8.5 times less parameters and up to 48 times faster inference speed than previously reported methods. In addition, our model is data efficient, and exceeds previous state of the art on the ADE metric with only 20% of the training data. We propose a kernel function to embed the social interactions between pedestrians within the adjacency matrix. Through qualitative analysis, we show that our model inherited social behaviors that can be expected between pedestrians trajectories. Code is available at https://github.com/abduallahmohamed/Social-STGCNN.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/9156583/
dc.relation.urlhttps://ieeexplore.ieee.org/document/9156583/
dc.relation.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9156583
dc.rightsArchived with thanks to IEEE
dc.titleSocial-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalCVPR 2020
dc.conference.date13-19 June 2020
dc.conference.name2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
dc.conference.locationSeattle, WA, USA
dc.eprint.versionPost-print
dc.contributor.institutionThe University of Texas at Austin
dc.identifier.arxivid2002.11927
kaust.personElhoseiny, Mohamed
dc.date.accepted2019
dc.relation.issupplementedbygithub:abduallahmohamed/Social-STGCNN
refterms.dateFOA2020-03-04T08:15:21Z
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Software]</i> <br/> Title: abduallahmohamed/Social-STGCNN: Code for "Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction" CVPR 2020. Publication Date: 2020-02-27. github: <a href="https://github.com/abduallahmohamed/Social-STGCNN" >abduallahmohamed/Social-STGCNN</a> Handle: <a href="http://hdl.handle.net/10754/668129" >10754/668129</a></a></li></ul>
dc.date.published-online2020-08-05
dc.date.published-print2020-06
dc.date.posted2020-02-27


Files in this item

Thumbnail
Name:
Preprintfile1.pdf
Size:
3.184Mb
Format:
PDF
Description:
Pre-print

This item appears in the following Collection(s)

Show simple item record