Multiple Interaction Attention Model for Open-World Knowledge Graph Completion
Type
Conference PaperDate
2019-11-14Embargo End Date
2020-11-14Permanent link to this record
http://hdl.handle.net/10754/661852
Metadata
Show full item recordAbstract
Knowledge Graph Completion (KGC) aims at complementing missing relationships between entities in a Knowledge Graph (KG). While closed-world KGC approaches utilizing the knowledge within KG could only complement very limited number of missing relations, more and more approaches tend to get knowledge from open-world resources such as online encyclopedias and newswire corpus. For instance, a recent proposed open-world KGC model called ConMask learns embeddings of the entity’s name and parts of its text-description to connect unseen entities to the KG. However, this model does not make full use of the rich feature information in the text descriptions, besides, the proposed relationship-dependent content masking method may easily miss to find the target-words. In this paper, we propose to use a Multiple Interaction Attention (MIA) mechanism to model the interactions between the head entity description, head entity name, the relationship name, and the candidate tail entity descriptions, to form the enriched representations. Our empirical study conducted on two real-world data collections shows that our approach achieves significant improvements comparing to state-of-the-art KGC methods.Citation
Fu, C., Li, Z., Yang, Q., Chen, Z., Fang, J., Zhao, P., & Xu, J. (2019). Multiple Interaction Attention Model for Open-World Knowledge Graph Completion. Lecture Notes in Computer Science, 630–644. doi:10.1007/978-3-030-34223-4_40Publisher
Springer NatureConference/Event name
20th International Conference on Web Information Systems Engineering, WISE 2019Additional Links
http://link.springer.com/10.1007/978-3-030-34223-4_40ae974a485f413a2113503eed53cd6c53
10.1007/978-3-030-34223-4_40