• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A data-driven choice of misfit function for FWI using reinforcement learning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    315.6Kb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Sun, Bingbing
    Alkhalifah, Tariq Ali cc
    KAUST Department
    Earth Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Seismic Wave Analysis Group
    Date
    2020-02-08
    Permanent link to this record
    http://hdl.handle.net/10754/661750
    
    Metadata
    Show full item record
    Abstract
    In the workflow of Full-Waveform Inversion (FWI), we often tune the parameters of the inversion to help us avoid cycle skipping and obtain high resolution models. For example, typically start by using objective functions that avoid cycle skipping, like tomographic and image based or using only low frequency, and then later, we utilize the least squares misfit to admit high resolution information. We also may perform an isotropic (acoustic) inversion to first update the velocity model and then switch to multi-parameter anisotropic (elastic) inversions to fully recover the complex physics. Such hierarchical approaches are common in FWI, and they often depend on our manual intervention based on many factors, and of course, results depend on experience. However, with the large data size often involved in the inversion and the complexity of the process, making optimal choices is difficult even for an experienced practitioner. Thus, as an example, and within the framework of reinforcement learning, we utilize a deep-Q network (DQN) to learn an optimal policy to determine the proper timing to switch between different misfit functions. Specifically, we train the state-action value function (Q) to predict when to use the conventional L2-norm misfit function or the more advanced optimal-transport matching-filter (OTMF) misfit to mitigate the cycle-skipping and obtain high resolution, as well as improve convergence. We use a simple while demonstrative shifted-signal inversion examples to demonstrate the basic principles of the proposed method.
    Publisher
    arXiv
    arXiv
    2002.03154
    Additional Links
    https://arxiv.org/pdf/2002.03154
    Collections
    Preprints; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.