Show simple item record

dc.contributor.authorZheng, Xiaopeng
dc.contributor.authorYuan, Shuai
dc.contributor.authorLiu, Jiakai
dc.contributor.authorYin, Jun
dc.contributor.authorYuan, Fanglong
dc.contributor.authorShen, Wan-Shan
dc.contributor.authorYao, Kexin
dc.contributor.authorWei, Mingyang
dc.contributor.authorZhou, Chun
dc.contributor.authorSong, Kepeng
dc.contributor.authorZhang, Bin-Bin
dc.contributor.authorLin, Yuanbao
dc.contributor.authorHedhili, Mohamed N.
dc.contributor.authorWehbe, Nimer
dc.contributor.authorHan, Yu
dc.contributor.authorSun, Hong-Tao
dc.contributor.authorLu, Zheng-Hong
dc.contributor.authorAnthopoulos, Thomas D.
dc.contributor.authorMohammed, Omar F.
dc.contributor.authorSargent, Edward H.
dc.contributor.authorLiao, Liang-Sheng
dc.contributor.authorBakr, Osman
dc.date.accessioned2020-02-19T08:29:21Z
dc.date.available2020-02-19T08:29:21Z
dc.date.issued2020-02-11
dc.date.submitted2020-01-08
dc.identifier.citationZheng, X., Yuan, S., Liu, J., Yin, J., Yuan, F., Shen, W.-S., … Bakr, O. M. (2020). Chlorine Vacancy Passivation in Mixed-Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters. doi:10.1021/acsenergylett.0c00057
dc.identifier.doi10.1021/acsenergylett.0c00057
dc.identifier.urihttp://hdl.handle.net/10754/661562
dc.description.abstractBlue-emitting perovskites can be easily attained by precisely tuning the halide ratio of mixed halide (Br/Cl) perovskites (MHPs). However, the adjustable halide ratio hinders the passivation of Cl vacancies, the main source of trap states leading to inferior performance of blue MHP lightemitting diodes (LEDs). Here, we report a strategy for passivating Cl vacancies in MHP quantum dots (QDs) using nonpolar solvent-soluble organic pseudohalide [n-dodecylammonium thiocyanate (DAT)], enabling blue MHP LEDs with greatly enhanced efficiency. Density functional theory calculations reveal that the thiocyanate (SCN−) groups fill in the Cl vacancies and remove electron traps within the bandgap. DAT-treated CsPb(BrxCl1−x)3 QDs exhibit near unity (∼100%) photoluminescence quantum yields, and their blue (∼470 nm) LEDs are spectrally stable with an external quantum efficiency of 6.3%, a record for perovskite LEDs emitting in the range of 460−480 nm relevant to Rec. 2020 display standards, and a halflifetime of ∼99 s.
dc.description.sponsorshipThe authors acknowledge the funding support from KAUST, the National Natural Science Foundation of China (Grants 61575136 and 51773141), and the Collaborative Innovation Centre of Suzhou Nano Science and Technology (Nano-CIC) by the Priority Academic Program. E.H.S. and all co-authors from the Department of Electrical and Computer Engineering at the University of Toronto acknowledge the financial support from the Ontario Research Fund−Research Excellence Program and from the Natural Sciences and Engineering Research Council of Canada (NSERC).
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acsenergylett.0c00057
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Energy Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsenergylett.0c00057.
dc.titleChlorine Vacancy Passivation in Mixed-Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentChemical Science Program
dc.contributor.departmentFunctional Nanomaterials Lab (FuNL)
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentNanostructured Functional Materials (NFM) laboratory
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSurface Science
dc.contributor.departmentUltrafast Laser Spectroscopy and Four-dimensional Electron Imaging Research Group
dc.identifier.journalACS Energy Letters
dc.rights.embargodate2021-02-11
dc.eprint.versionPost-print
dc.contributor.institutionJiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
dc.contributor.institutionDepartment of Electrical and Computer Engineering and Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
dc.contributor.institutionDepartment of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada; orcid.org/0000-0003-2050-0822
dc.contributor.institutionCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; orcid.org/0000-0002-9711-6741
kaust.personZheng, Xiaopeng
kaust.personLiu, Jiakai
kaust.personYin, Jun
kaust.personYao, Kexin
kaust.personSong, Kepeng
kaust.personHedhili, Mohamed N.
kaust.personWehbe, Nimer
kaust.personHan, Yu
kaust.personAnthopoulos, Thomas D.
kaust.personMohammed, Omar F.
kaust.personBakr, Osman M.
dc.date.accepted2020-02-11
refterms.dateFOA2021-02-11T00:00:00Z
dc.date.published-online2020-02-11
dc.date.published-print2020-03-13


Files in this item

Thumbnail
Name:
Manuscript.pdf
Size:
1.887Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record