Show simple item record

dc.contributor.authorMarondedze, Claudius
dc.contributor.authorThomas, Ludivine
dc.contributor.authorLilley, Kathryn S.
dc.contributor.authorGehring, Christoph A
dc.date.accessioned2020-02-17T13:55:07Z
dc.date.available2020-02-17T13:55:07Z
dc.date.issued2020-01-21
dc.date.submitted2029-10-14
dc.identifier.citationMarondedze, C., Thomas, L., Lilley, K. S., & Gehring, C. (2020). Drought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components. Frontiers in Molecular Biosciences, 6. doi:10.3389/fmolb.2019.00163
dc.identifier.doi10.3389/fmolb.2019.00163
dc.identifier.urihttp://hdl.handle.net/10754/661551
dc.description.abstractThe spliceosome processes RNAs from a pre-RNA state to a mature mRNA thereby influencing RNA availability for translation, localization, and turnover. It consists of complex structures containing RNA-binding proteins (RBPs) essential for post-transcriptional gene expression control. Here we investigate the dynamic modifications of spliceosomal RBPs under stress and in particular drought stress. We do so by mRNA interactome capture in Arabidopsis thaliana using label free quantitation. This approach identified 44 proteins associated with the spliceosome and further 32 proteins associated with stress granules. We noted a high enrichment in the motifs RDRR and RSRSRS that are characteristic of RNA interacting proteins. Identification of splicing factors reflect direct and/or indirect stress induced splicing events that have a direct effect on transcriptome and proteome changes under stress. Furthermore, detection of stress granule components is consistent with transcriptional arrest. Identification of drought induced stress granule components is critical in determining common abiotic stress-induced foci that can have biotechnological applications. This study may therefore open ways to modify plant stress responses at a systems level through the modification of key spliceosome components.
dc.description.sponsorshipThe authors would like to thank Marco Chiapello and Mike Deery from the Cambridge Center for Proteomics (CCP), University of Cambridge for their assistance in Mass spectrometry and data analyses discussions, Xiaolan Yu for providing Arabidopsis ecotype Columbia-0 cell suspension cultures. Funding. This work was supported by the Office of Competitive Research Grant Program from the King Abdullah University of Science and Technology (grant no. CRG3-62140383).
dc.publisherFrontiers Media SA
dc.relation.urlhttps://www.frontiersin.org/article/10.3389/fmolb.2019.00163/full
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDrought Stress Causes Specific Changes to the Spliceosome and Stress Granule Components
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentBioscience Core Lab
dc.contributor.departmentBioscience Program
dc.contributor.departmentComputational Bioscience Research Center (CBRC)
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentMolecular Signalling Group
dc.identifier.journalFrontiers in Molecular Biosciences
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Biochemistry, Cambridge Centre for Proteomics and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
dc.contributor.institutionHM.Clause, Portes-lès-Valence, France
dc.contributor.institutionDepartment of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
kaust.personMarondedze, Claudius
kaust.personThomas, Ludivine
kaust.personGehring, Christoph A.
dc.date.accepted2019-12-24
refterms.dateFOA2020-02-17T13:56:03Z


Files in this item

Thumbnail
Name:
fmolb-06-00163.pdf
Size:
5.965Mb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.