• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Mitigating Polysulfide Shuttling in Li-S Battery

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Mengliu Li - Dissertation - Final Draft.pdf
    Size:
    4.412Mb
    Format:
    PDF
    Description:
    Mengliu Li - Dissertation - Final Draft
    Download
    Type
    Dissertation
    Authors
    Li, Mengliu cc
    Advisors
    Lai, Zhiping cc
    Committee members
    Li, Lain-Jong cc
    Huang, Kuo-Wei
    Tung, Vincent cc
    Li, Yangxing
    Program
    Material Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2019-11-16
    Permanent link to this record
    http://hdl.handle.net/10754/661542
    
    Metadata
    Show full item record
    Abstract
    The energy source shortage has become a severe issue, and solving the problem with renewable and sustainable energy is the primary trend. Among the new generation energy storage, lithium-sulfur (Li-S) battery stands out for its low cost, high theoretical capacity (1,675 mAh g-1), and environmentally friendly properties. Intensive researches have been focusing on this system and significant improvement has been achieved. However, several problems still need to be resolved for its practical application, especially for the “shuttle effect” issue coming from the dissolved intermediate polysulfides, which could cause rapid capacity decay and low Coulombic efficiency (CE). Several methods are proposed to eliminate this issue, including using interlayers, modifying separators, and protecting the lithium anode. A carbon interlayer is first introduced to compare the function of the graphene and carbon nanotubes (CNTs), while the CNTs performs better with its higher conductivity and 3D network structure. The following study is conducted based on this finding. A more efficient method is to modify the separator with functional materials. 1) The dissolved polysulfide (Sn2-) could be repelled by electrostatic forces. With the Poly (styrene sulfonate) (PSS), the separator could function as an anion barrier to the intermediate polysulfides. 2D ultra-thin zinc benzimidazolate coordination polymer has the OH- functional groups and works with the same mechanism. 2) A novel covalent organic framework (COF) has a relatively small pore size, which can block the polysulfide and restrain them at the cathode side. 3) Metal-organic framework (MOF) materials have the adjustable pore size and structure, which can absorb and trap polysulfides within their cavities. Moreover, the dense stacking of the MOF particles creates a physical blocking for the polysulfides, which efficiently suppresses the diffusion process. Protection of the lithium surface directly with an artificial layer or a solid electrolyte interphase (SEI) can inhibit the polysulfide deposition and suppress the lithium dendrite. A polyvinylidene difluoride (PVDF) membrane is used as an artificial film on lithium anode, which could greatly enhance the battery cyclability and CE. Future work will be conducted based on this concept, especially building an artificial SEI.
    Citation
    Li, M. (2019). Mitigating Polysulfide Shuttling in Li-S Battery. KAUST Research Repository. https://doi.org/10.25781/KAUST-PYM2W
    DOI
    10.25781/KAUST-PYM2W
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-PYM2W
    Scopus Count
    Collections
    Dissertations; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.