• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Final manuscript-spherical flame.pdf
    Size:
    3.085Mb
    Format:
    PDF
    Description:
    Accepted manuscript
    Download
    Type
    Article
    Authors
    Kim, Hee J.
    Van, Kyuho
    Lee, Dae K.
    Yoo, Chun S.
    Park, Jeong
    Chung, Suk Ho cc
    KAUST Department
    Combustion and Laser Diagnostics Laboratory
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2020-02-04
    Online Publication Date
    2020-02-04
    Print Publication Date
    2020-04
    Embargo End Date
    2022-02-04
    Submitted Date
    2019-08-02
    Permanent link to this record
    http://hdl.handle.net/10754/661491
    
    Metadata
    Show full item record
    Abstract
    An experimental study on laminar flame speed, Markstein length, and the onset of cellular instability was conducted by varying the equivalence ratio and ethylene/methane mixing ratio in spherically propagating premixed flames at ambient temperature and elevated pressures up to 0.8 MPa. Unstretched laminar burning velocities were first validated for methane − air flames by optimizing the range of the flame radius in testing linear and non-linear extrapolation models, and subsequently comparing the results with those simulated using four kinetic mechanisms. Based on the results, unstretched laminar burning velocities were determined for premixed flames of methane/ethylene mixture fuels. The predictability of theoretical Markstein lengths was appreciated by adopting a composite solution of the heat-release-weighted Lewis number and the temperature-dependent Zel'dovich number. Measured Markstein lengths were compared with those predicted based on a composite model for laminar flame speeds against flame radius. Depending on the fuels (methane or methane/ethylene mixture), pressure, and equivalence ratio, the predictability of the model varied. For methane − air flames, cellular instabilities were not observed within the observation window at pressures up to 0.6 MPa. Cell formation, caused by hydrodynamic instability, was enhanced by an increase in the ethylene ratio and chamber pressure. Theoretical critical flame radii for the onset of cellular instability predicted by the composite model were consistent with the measured ones for both lean and rich mixtures.
    Citation
    Kim, H. J., Van, K., Lee, D. K., Yoo, C. S., Park, J., & Chung, S. H. (2020). Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames. Combustion and Flame, 214, 464–474. doi:10.1016/j.combustflame.2020.01.011
    Sponsors
    This work was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (B9-2431). CSY was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2018R1A2A2A05018901). SHC was supported by the King Abdullah University of Science and Technology (KAUST).
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2020.01.011
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S0010218020300146
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2020.01.011
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.