• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Articlefile1.pdf
    Size:
    1.441Mb
    Format:
    PDF
    Description:
    Publisher's Version/PDF
    Download
    Type
    Article
    Authors
    Zhang, Senfu cc
    Zhang, Xichao
    Zhang, Junwei cc
    Ganguly, Arnab cc
    Xia, Jing cc
    Wen, Yan cc
    Zhang, Qiang cc
    Yu, Guoqiang cc
    Hou, Zhipeng
    Wang, Wenhong
    Peng, Yong
    Xiao, Gang cc
    Manchon, Aurelien cc
    Kosel, Jürgen cc
    Zhou, Yan cc
    Zhang, Xixiang cc
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Imaging and Characterization Core Lab
    Material Science and Engineering
    Material Science and Engineering Program
    Nanofabrication Core Lab
    Physical Science and Engineering (PSE) Division
    Sensing, Magnetism and Microsystems Lab
    Spintronics Theory Group
    Thin Films & Characterization
    KAUST Grant Number
    CRF-2015-SENSORS-2708
    OSR-2016-CRG5-2977
    OSR-2017-CRG6-3427
    Date
    2020-02-07
    Online Publication Date
    2020-02-07
    Print Publication Date
    2020-02
    Submitted Date
    2019-05-28
    Permanent link to this record
    http://hdl.handle.net/10754/661482
    
    Metadata
    Show full item record
    Abstract
    The direct imaging of current density vector distributions in thin films has remained a daring challenge. Here, we report that an inhomogeneous current distribution can be mapped directly by the trajectories of magnetic half-skyrmions driven by an electrical current in Pt/Co/Ta trilayer, using polar magneto-optical Kerr microscopy. The half-skyrmion carries a topological charge of 0.5 due to the presence of Dzyaloshinskii-Moriya interaction, which leads to the half-skyrmion Hall effect. The Hall angle of half-skyrmions is independent of current density and can be reduced to as small as 4° by tuning the thickness of the Co layer. The Hall angle is so small that the elongation path of half-skyrmion approximately delineates the invisible current flow as demonstrated in both a continuous film and a curved track. Our work provides a practical technique to directly map inhomogeneous current distribution even in complex geometries for both fundamental research and industrial applications.
    Citation
    Zhang, S., Zhang, X., Zhang, J., Ganguly, A., Xia, J., Wen, Y., … Zhang, X.-X. (2020). Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions. Science Advances, 6(6), eaay1876. doi:10.1126/sciadv.aay1876
    Sponsors
    This publication is based on research supported by the King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR), under award nos. OSR-2016-CRG5-2977, OSR-2017-CRG6-3427, and CRF-2015-SENSORS-2708. X.Z. acknowledges the support by the Presidential Postdoctoral Fellowship of The Chinese University of Hong Kong, Shenzhen (CUHKSZ). Y.Z. acknowledges the support by the President’s Fund of CUHKSZ, Longgang Key Laboratory of Applied Spintronics, National Natural Science Foundation of China (grant no. 11574137), and Shenzhen Fundamental Research Fund (grant nos. JCYJ20160331164412545 and JCYJ20170410171958839). W.W. acknowledge financial support by the National Key R&D Program of China (no. 2017YFA0303202). Author contributions: S.Z. and X.-X.Z. conceived and coordinated the project and analyzed the data. X.Z., J.X., and Y.Z. developed the theoretical model. Y.W. and S.Z. fabricated the samples, and S.Z. performed the MOKE measurements. S.Z., X.Z., and X.-X.Z. wrote the manuscript. The study was supervised by X.-X.Z. All authors contributed to the discussion and preparation of the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
    Publisher
    American Association for the Advancement of Science (AAAS)
    Journal
    Science Advances
    DOI
    10.1126/sciadv.aay1876
    Additional Links
    https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aay1876
    https://advances.sciencemag.org/content/advances/6/6/eaay1876.full.pdf
    ae974a485f413a2113503eed53cd6c53
    10.1126/sciadv.aay1876
    Scopus Count
    Collections
    Nanofabrication Core Lab; Articles; Imaging and Characterization Core Lab; Physical Science and Engineering (PSE) Division; Spintronics Theory Group; Electrical Engineering Program; Material Science and Engineering Program; Sensing, Magnetism and Microsystems Lab; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Spin-Decoupled Multifunctional Metasurface for Asymmetric Polarization Generation

      Xu, Yuehong; Li, Quan; Zhang, Xueqian; Wei, Minggui; Xu, Quan; Wang, Qiu; Zhang, Huifang; Zhang, Wentao; Hu, Cong; Zhang, Zhenwei; Zhang, Cunlin; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili (ACS Photonics, American Chemical Society (ACS), 2019-10-28) [Article]
      Integrating multiple functionalities into a single device is a striking field in metasurfaces. One promising aspect is polarization-dependent meta-devices enabled by simultaneous phase control over orthogonally polarized waves. Among these, Pancharatnam-Berry (PB) metasurfaces have drawn enormous interest owing to their natural and robust phase control ability over different circularly polarized waves. However, the phase responses are locked to be opposite with each other, resulting in interrelated functionalities under the circularly polarized incidence. Here, a generic designing method based on transmission-type dielectric metasurfaces is proposed in the terahertz regime, which breaks this relation by further incorporating dynamic phase with geometric phase, namely, spin-decoupled phase control method. We demonstrate this method by designing and characterizing an efficient multifunctional meta-grating, which splits different circularly polarized waves to asymmetric angles under normal incidences. More importantly, we promote this method by designing several multiplexed meta-gratings for applications of asymmetric polarization generation, which can convert arbitrary linearly polarized wave to two different linearly polarized waves with nearly equal strength and split them to asymmetric angles with a polarization-insensitive efficiency. The designing strategy proposed here shows an impressive robustness and a great flexibility for designing multifunctional metasurface-based devices and opens new avenues toward modulation of polarization states and the application of metasurfaces in beam steering and polarization multiplexing systems.
    • Thumbnail

      The Visual Object Tracking VOT2017 Challenge Results

      Kristan, Matej; Leonardis, Ales; Matas, Jiri; Felsberg, Michael; Pflugfelder, Roman; Zajc, Luka Cehovin; Vojir, Tomas; Hager, Gustav; Lukezic, Alan; Eldesokey, Abdelrahman; Fernandez, Gustavo; Garcia-Martin, Alvaro; Muhic, A.; Petrosino, Alfredo; Memarmoghadam, Alireza; Vedaldi, Andrea; Manzanera, Antoine; Tran, Antoine; Alatan, Aydin; Mocanu, Bogdan; Chen, Boyu; Huang, Chang; Xu, Changsheng; Sun, Chong; Du, Dalong; Zhang, David; Du, Dawei; Mishra, Deepak; Gundogdu, Erhan; Velasco-Salido, Erik; Khan, Fahad Shahbaz; Battistone, Francesco; Subrahmanyam, Gorthi R. K. Sai; Bhat, Goutam; Huang, Guan; Bastos, Guilherme; Seetharaman, Guna; Zhang, Hongliang; Li, Houqiang; Lu, Huchuan; Drummond, Isabela; Valmadre, Jack; Jeong, Jae-chan; Cho, Jae-il; Lee, Jae-Yeong; Noskova, Jana; Zhu, Jianke; Gao, Jin; Liu, Jingyu; Kim, Ji-Wan; Henriques, Joao F.; Martinez, Jose M.; Zhuang, Junfei; Xing, Junliang; Gao, Junyu; Chen, Kai; Palaniappan, Kannappan; Lebeda, Karel; Gao, Ke; Kitani, Kris M.; Zhang, Lei; Wang, Lijun; Yang, Lingxiao; Wen, Longyin; Bertinetto, Luca; Poostchi, Mahdieh; Danelljan, Martin; Müller, Matthias; Zhang, Mengdan; Yang, Ming-Hsuan; Xie, Nianhao; Wang, Ning; Miksik, Ondrej; Moallem, P.; M, Pallavi Venugopal; Senna, Pedro; Torr, Philip H. S.; Wang, Qiang; Yu, Qifeng; Huang, Qingming; Martin-Nieto, Rafael; Bowden, Richard; Liu, Risheng; Tapu, Ruxandra; Hadfield, Simon; Lyu, Siwei; Golodetz, Stuart; Choi, Sunglok; Zhang, Tianzhu; Zaharia, Titus; Santopietro, Vincenzo; Zou, Wei; Hu, Weiming; Tao, Wenbing; Li, Wenbo; Zhou, Wengang; Yu, Xianguo; Bian, Xiao; Li, Yang; Xing, Yifan; Fan, Yingruo; Zhu, Zheng; Zhang, Zhipeng; He, Zhiqun (2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Institute of Electrical and Electronics Engineers (IEEE), 2018-01-22) [Conference Paper]
      The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative. Results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years. The evaluation included the standard VOT and other popular methodologies and a new 'real-time' experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The VOT2017 goes beyond its predecessors by (i) improving the VOT public dataset and introducing a separate VOT2017 sequestered dataset, (ii) introducing a realtime tracking experiment and (iii) releasing a redesigned toolkit that supports complex experiments. The dataset, the evaluation kit and the results are publicly available at the challenge website1.
    • Thumbnail

      Unveiling of the energy storage mechanisms of multi -modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes

      Zhang, Jiahe; Zhang, Haitao; Zhang, Yaqin; Zhang, Junwei; He, Hongyan; Zhang, Xixiang; Shim, Jae Jin; Zhang, Suojiang (Electrochimica Acta, Elsevier Ltd, 2019-04-29) [Article]
      A better understanding of the energy-storage mechanisms in complex pseudocapacitive nanostructures is essential to improve the performances of nanohybrid supercapacitors. In this study, highly interface modified Nb2O5 nanoarrays, attached to graphene nanosheets, were carefully designed and synthesized. The electrochemical performances were evaluated in an organic electrolyte, a formulated ionic-liquid mixture electrolyte, and a nanocomposite ionogel electrolyte, respectively. The capacitive and faradaic storage contributions were assessed qualitatively in diverse electrolytes at various temperatures. The capacitive contribution in the ionic liquid electrolyte was found to rise with increasing temperature. A molecular dynamics simulation proved that the increased diffusion coefficient of large ions was much more pronounced than that of the small Li+ ions. A carefully optimized quasi-solid-state lithium ion capacitor, fabricated using a (Nb2O5@C)/rGO nanoarchitecture as the anode and an ionic liquid gel separator, delivered an energy density of 101 Wh kg−1 and a power density of 24 kW kg−1 at 60 °C. The efficient coupling between the nanohybrids and a complex ionogel electrolyte opens a new window for the rational design of high energy-density supercapacitors.
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.