Show simple item record

dc.contributor.authorFirdaus, Yuliar
dc.contributor.authorHe, Qiao
dc.contributor.authorLin, Yuanbao
dc.contributor.authorNugroho, Ferry Anggoro Ardy
dc.contributor.authorLe Corre, Vincent M.
dc.contributor.authorYengel, Emre
dc.contributor.authorAlbalawi, Ahmed
dc.contributor.authorSeitkhan, Akmaral
dc.contributor.authorLaquai, Frédéric
dc.contributor.authorLanghammer, Christoph
dc.contributor.authorLiu, Feng
dc.contributor.authorHeeney, Martin
dc.contributor.authorAnthopoulos, Thomas D.
dc.date.accessioned2020-02-11T13:34:40Z
dc.date.available2020-02-11T13:34:40Z
dc.date.issued2020
dc.date.submitted2019-10-24
dc.identifier.citationFirdaus, Y., He, Q., Lin, Y., Nugroho, F. A. A., Le Corre, V. M., Yengel, E., … Anthopoulos, T. D. (2020). Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells. Journal of Materials Chemistry A, 8(3), 1164–1175. doi:10.1039/c9ta11752k
dc.identifier.doi10.1039/c9ta11752k
dc.identifier.urihttp://hdl.handle.net/10754/661472
dc.description.abstractThe power conversion efficiency (PCE) of tandem organic photovoltaics (OPVs) is currently limited by the lack of suitable wide-bandgap materials for the front-cell. Here, two new acceptor molecules, namely IDTA and IDTTA, with optical bandgaps (Eoptg) of 1.90 and 1.75 eV, respectively, are synthesized and studied for application in OPVs. When PBDB-T is used as the donor polymer, single-junction cells with PCE of 7.4%, for IDTA, and 10.8%, for IDTTA, are demonstrated. The latter value is the highest PCE reported to date for wide-bandgap (Eoptg ≥ 1.7 eV) bulk-heterojunction OPV cells. The higher carrier mobility in IDTTA-based cells leads to improved charge extraction and higher fill-factor than IDTA-based devices. Moreover, IDTTA-based OPVs show significantly improved shelf-lifetime and thermal stability, both critical for any practical applications. With the aid of optical-electrical device modelling, we combined PBDB-T:IDTTA, as the front-cell, with PTB7-Th:IEICO-4F, as the back-cell, to realize tandem OPVs with open circuit voltage of 1.66 V, short circuit current of 13.6 mA cm-2 and a PCE of 15%; in excellent agreement with our theoretical predictions. The work highlights IDTTA as a promising wide-bandgap acceptor for high-performance tandem OPVs.
dc.description.sponsorshipThis publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2018-CARF/ CCF-3079. We thank the China Scholarship Council (CSC) via the CSC Imperial Scholarship and the Royal Society and the Wolfson Foundation (for Royal Society Wolfson Fellowship). C. L. acknowledges financial support from the Swedish Foundation for Strategic Research Project RMA15-0052.
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.urlhttp://xlink.rsc.org/?DOI=C9TA11752K
dc.rightsArchived with thanks to Journal of Materials Chemistry A
dc.titleNovel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells
dc.typeArticle
dc.contributor.departmentAli I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
dc.contributor.departmentDepartment of Chemistry, Centre for Plastic Electronics, Imperial College London London W12 0BZ Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa
dc.contributor.departmentDepartment of Physics, Chalmers University of Technology Göteborg 412 96 Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentKing Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Division of Physical Sciences and Engineering Thuwal 23955-6900 Kingdom of Saudi Arabia Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa
dc.contributor.departmentMaterial Science and Engineering
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentUniversity of Groningen, Zernike Institute for Advanced Materials Nijenborgh 4 Groningen 9747 AG Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa
dc.identifier.journalJournal of Materials Chemistry A
dc.rights.embargodate2020-12-09
dc.eprint.versionPost-print
dc.contributor.institutionSchool of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University Shanghai 200240 P. R. China
kaust.personFirdaus, Yuliar
kaust.personHe, Qiao
kaust.personLin, Yuanbao
kaust.personNugroho, Ferry Anggoro Ardy
kaust.personLe Corre, Vincent M.
kaust.personYengel, Emre
kaust.personAlbalawi, Ahmed
kaust.personSeitkhan, Akmaral
kaust.personLaquai, Frederic
kaust.personLanghammer, Christoph
kaust.personHeeney, Martin
kaust.personAnthopoulos, Thomas D.
dc.date.accepted2019-12-09
refterms.dateFOA2020-02-12T10:20:20Z
kaust.acknowledged.supportUnitCCF
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)


Files in this item

Thumbnail
Name:
Firdaus et al., J. Mater. Chem. A. 2020_8_1164.pdf
Size:
2.680Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record