Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells
dc.contributor.author | Firdaus, Yuliar | |
dc.contributor.author | He, Qiao | |
dc.contributor.author | Lin, Yuanbao | |
dc.contributor.author | Nugroho, Ferry Anggoro Ardy | |
dc.contributor.author | Le Corre, Vincent M. | |
dc.contributor.author | Yengel, Emre | |
dc.contributor.author | Albalawi, Ahmed | |
dc.contributor.author | Seitkhan, Akmaral | |
dc.contributor.author | Laquai, Frédéric | |
dc.contributor.author | Langhammer, Christoph | |
dc.contributor.author | Liu, Feng | |
dc.contributor.author | Heeney, Martin | |
dc.contributor.author | Anthopoulos, Thomas D. | |
dc.date.accessioned | 2020-02-11T13:34:40Z | |
dc.date.available | 2020-02-11T13:34:40Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2019-10-24 | |
dc.identifier.citation | Firdaus, Y., He, Q., Lin, Y., Nugroho, F. A. A., Le Corre, V. M., Yengel, E., … Anthopoulos, T. D. (2020). Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells. Journal of Materials Chemistry A, 8(3), 1164–1175. doi:10.1039/c9ta11752k | |
dc.identifier.doi | 10.1039/c9ta11752k | |
dc.identifier.uri | http://hdl.handle.net/10754/661472 | |
dc.description.abstract | The power conversion efficiency (PCE) of tandem organic photovoltaics (OPVs) is currently limited by the lack of suitable wide-bandgap materials for the front-cell. Here, two new acceptor molecules, namely IDTA and IDTTA, with optical bandgaps (Eoptg) of 1.90 and 1.75 eV, respectively, are synthesized and studied for application in OPVs. When PBDB-T is used as the donor polymer, single-junction cells with PCE of 7.4%, for IDTA, and 10.8%, for IDTTA, are demonstrated. The latter value is the highest PCE reported to date for wide-bandgap (Eoptg ≥ 1.7 eV) bulk-heterojunction OPV cells. The higher carrier mobility in IDTTA-based cells leads to improved charge extraction and higher fill-factor than IDTA-based devices. Moreover, IDTTA-based OPVs show significantly improved shelf-lifetime and thermal stability, both critical for any practical applications. With the aid of optical-electrical device modelling, we combined PBDB-T:IDTTA, as the front-cell, with PTB7-Th:IEICO-4F, as the back-cell, to realize tandem OPVs with open circuit voltage of 1.66 V, short circuit current of 13.6 mA cm-2 and a PCE of 15%; in excellent agreement with our theoretical predictions. The work highlights IDTTA as a promising wide-bandgap acceptor for high-performance tandem OPVs. | |
dc.description.sponsorship | This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2018-CARF/ CCF-3079. We thank the China Scholarship Council (CSC) via the CSC Imperial Scholarship and the Royal Society and the Wolfson Foundation (for Royal Society Wolfson Fellowship). C. L. acknowledges financial support from the Swedish Foundation for Strategic Research Project RMA15-0052. | |
dc.publisher | Royal Society of Chemistry (RSC) | |
dc.relation.url | http://xlink.rsc.org/?DOI=C9TA11752K | |
dc.rights | Archived with thanks to Journal of Materials Chemistry A | |
dc.title | Novel wide-bandgap non-fullerene acceptors for efficient tandem organic solar cells | |
dc.type | Article | |
dc.contributor.department | Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC) | |
dc.contributor.department | Department of Chemistry, Centre for Plastic Electronics, Imperial College London London W12 0BZ Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa | |
dc.contributor.department | Department of Physics, Chalmers University of Technology Göteborg 412 96 Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa | |
dc.contributor.department | KAUST Solar Center (KSC) | |
dc.contributor.department | King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Division of Physical Sciences and Engineering Thuwal 23955-6900 Kingdom of Saudi Arabia Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa | |
dc.contributor.department | Material Science and Engineering | |
dc.contributor.department | Material Science and Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.contributor.department | University of Groningen, Zernike Institute for Advanced Materials Nijenborgh 4 Groningen 9747 AG Email: Yuliar.firdaus@kaust.edu.sa;thomas.anthopoulos@kaust.edu.sa | |
dc.identifier.journal | Journal of Materials Chemistry A | |
dc.rights.embargodate | 2020-12-09 | |
dc.eprint.version | Post-print | |
dc.contributor.institution | School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University Shanghai 200240 P. R. China | |
kaust.person | Firdaus, Yuliar | |
kaust.person | He, Qiao | |
kaust.person | Lin, Yuanbao | |
kaust.person | Nugroho, Ferry Anggoro Ardy | |
kaust.person | Le Corre, Vincent M. | |
kaust.person | Yengel, Emre | |
kaust.person | Albalawi, Ahmed | |
kaust.person | Seitkhan, Akmaral | |
kaust.person | Laquai, Frederic | |
kaust.person | Langhammer, Christoph | |
kaust.person | Heeney, Martin | |
kaust.person | Anthopoulos, Thomas D. | |
dc.date.accepted | 2019-12-09 | |
refterms.dateFOA | 2020-02-12T10:20:20Z | |
kaust.acknowledged.supportUnit | CCF | |
kaust.acknowledged.supportUnit | Office of Sponsored Research (OSR) |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Material Science and Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/material-science-and-engineering/Pages/default.aspx -
KAUST Solar Center (KSC)