Show simple item record

dc.contributor.authorLu, Kai
dc.contributor.authorLiu, Zhaolun
dc.contributor.authorHanafy, Sherif
dc.contributor.authorSchuster, Gerard T.
dc.date.accessioned2020-02-10T13:28:19Z
dc.date.available2020-02-10T13:28:19Z
dc.date.issued2020-01-09
dc.date.submitted2019-08-25
dc.identifier.citationLu, K., Liu, Z., Hanafy, S., & Schuster, G. (2020). Noise Reduction with Reflection Supervirtual Interferometry. GEOPHYSICS, 1–37. doi:10.1190/geo2019-0571.1
dc.identifier.doi10.1190/geo2019-0571.1
dc.identifier.urihttp://hdl.handle.net/10754/661454
dc.description.abstractTo image deeper portions of the earth, geophysicists must record reflection data with much greater source-receiver offsets. The problem with far-offset data is that the signal-to-noise ratio (SNR) significantly diminishes with greater offset. In many cases, the poor SNR makes the far-offset reflections imperceptible on the shot records. To mitigate this problem we develop supervirtual reflection interferometry (SVI), which can be applied to far-offset reflections to significantly increase their signal-to-noise ratio (SNR). The key idea is to select the common pair gathers where the phases of the correlated reflection arrivals differ from one another by no more than a quarter of a period so that the traces can be coherently stacked. The traces are correlated and summed together to create traces with virtual reflections, which in turn are convolved with one another and stacked to give the reflection traces with much stronger SNRs. This is similar to refraction SVI except far-offset reflections are used instead of refractions. The theory is validated with synthetic tests where SVI is applied to far-offset reflection arrivals to significantly improve their SNR. Reflection SVI is also applied to a field dataset where the reflections are too noisy to be clearly visible in the traces. After the implementation of reflection SVI, the NMO velocity can be accurately picked from the SVI-improved data, leading to a successful poststack migration for this dataset.
dc.description.sponsorshipWe thank the sponsors for supporting the Consortium of Subsurface Imaging and Fluid Modeling (CSIM). We also thank KAUST for providing funding by the CRG grant OCRF2014-CRG3-2300. For computer time, this research used the Computing Group and the Supercomputing Laboratory at KAUST.
dc.publisherSociety of Exploration Geophysicists
dc.relation.urlhttps://library.seg.org/doi/10.1190/geo2019-0571.1
dc.rightsArchived with thanks to GEOPHYSICS
dc.titleNoise Reduction with Reflection Supervirtual Interferometry
dc.typeArticle
dc.contributor.departmentCenter for Subsurface Imaging and Fluid Modeling
dc.contributor.departmentEarth Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalGEOPHYSICS
dc.eprint.versionPost-print
dc.contributor.institutionKing Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia..
kaust.personLu, Kai
kaust.personLiu, Zhaolun
kaust.personSchuster, Gerard T.
kaust.grant.numberCRG3
dc.date.accepted2020-01-04
refterms.dateFOA2020-02-10T13:29:06Z
kaust.acknowledged.supportUnitSupercomputing Laboratory at KAUST
dc.date.published-online2020-01-09
dc.date.published-print2020-05-01


Files in this item

Thumbnail
Name:
Kai_geo2019-0571.final.pdf
Size:
4.115Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record