Multichannel Deep Attention Neural Networks for the Classification of Autism Spectrum Disorder Using Neuroimaging and Personal Characteristic Data
Type
ArticleKAUST Department
Computational Bioscience Research Center (CBRC)Computer Science Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Structural and Functional Bioinformatics Group
Date
2020-01-31Submitted Date
2019-06-12Permanent link to this record
http://hdl.handle.net/10754/661441
Metadata
Show full item recordAbstract
Autism spectrum disorder (ASD) is a developmental disorder that impacts more than 1.6% of children aged 8 across the United States. It is characterized by impairments in social interaction and communication, as well as by a restricted repertoire of activity and interests. The current standardized clinical diagnosis of ASD remains to be a subjective diagnosis, mainly relying on behavior-based tests. However, the diagnostic process for ASD is not only time consuming, but also costly, causing a tremendous financial burden for patients’ families. Therefore, automated diagnosis approaches have been an attractive solution for earlier identification of ASD. In this work, we set to develop a deep learning model for automated diagnosis of ASD. Specifically, a multichannel deep attention neural network (DANN) was proposed by integrating multiple layers of neural networks, attention mechanism, and feature fusion to capture the interrelationships in multimodality data. We evaluated the proposed multichannel DANN model on the Autism Brain Imaging Data Exchange (ABIDE) repository with 809 subjects (408 ASD patients and 401 typical development controls). Our model achieved a state-of-the-art accuracy of 0.732 on ASD classification by integrating three scales of brain functional connectomes and personal characteristic data, outperforming multiple peer machine learning models in a $^{k}-fold cross validation experiment. Additional $^{k}-fold and leave-one-site-out cross validation were conducted to test the generalizability and robustness of the proposed multichannel DANN model. The results show promise for deep learning models to aid the future automated clinical diagnosis of ASD.Citation
Niu, K., Guo, J., Pan, Y., Gao, X., Peng, X., Li, N., & Li, H. (2020). Multichannel Deep Attention Neural Networks for the Classification of Autism Spectrum Disorder Using Neuroimaging and Personal Characteristic Data. Complexity, 2020, 1–9. doi:10.1155/2020/1357853Sponsors
This work was supported in part by the Beijing Education Commission Research Project of China under grant no. KM201911232004, National Natural Science Foundation of China under grant no. 61672105, and National Key Research and Development Program of China under grant no. 2018YFB1004100.Publisher
Hindawi LimitedJournal
ComplexityAdditional Links
https://www.hindawi.com/journals/complexity/2020/1357853/http://downloads.hindawi.com/journals/complexity/2020/1357853.pdf
ae974a485f413a2113503eed53cd6c53
10.1155/2020/1357853
Scopus Count
Except where otherwise noted, this item's license is described as This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.