• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Understanding of Imine Substitution in Wide-Bandgap Polymer Donor-Induced Efficiency Enhancement in All-Polymer Solar Cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Cao, Zhixiong cc
    Chen, Jiale
    Liu, Shengjian cc
    Qin, Minchao
    Jia, Tao
    Zhao, Jiaji
    Li, Qingduan
    Ying, Lei cc
    Cai, Yue-Peng
    Lu, Xinhui
    Huang, Fei cc
    Cao, Yong
    Date
    2019-09-23
    Embargo End Date
    2020-09-23
    Submitted Date
    2019-09-01
    Permanent link to this record
    http://hdl.handle.net/10754/661381
    
    Metadata
    Show full item record
    Abstract
    All-polymer solar cells (all-PSCs) are proven to possess outstanding thermal and mechanical stabilities. However, concurrently achieving appropriate phase-separated pattern, efficient charge transportation, and adequate charge transfer between donor and acceptor components is still a challenge, and thus, only a few polymer-polymer bulk heterojunction (BHJ) blends have yielded BHJ device power conversion efficiency (PCE) values of >8%. Generally, polymer backbone substitutions may have a direct influence on the device performance. Thus, this report examines a set of wide bandgap polymer donor analogues composed of thienothiophene (TT) or thiazolothiazole (TTz) motif, and their all-PSC device performance with N2200. Results show that all-PSCs based on the imine-substituted derivative PBDT-TTz exhibit PCE values as high as 8.4%, which largely outperform the analogue PBDT-TT-based ones with PCEs of only 0.7%. This work reveals that the imine substitution in polymer backbones of PBDT-TTz not only increases the ionization potential (IP) and electron affinity (EA), narrows the optical gap (Eopt), but also has significantly impacts on the BHJ film morphologies. PBDT-TTz:N2200 BHJ blends present better miscibility, suppressed phase separation, much stronger crystallinity, and face-on ordering, which contribute to efficient exciton dissociation, charge transportation, and therefore, high-efficiency in all-PSCs. This study demonstrates that the imine-substituted polymers composed of TTz motif, which can be easily synthesized through a facile two-step procedure, are a promising class of wide-bandgap polymer donors for efficient all-PSCs.
    Citation
    Cao, Z., Chen, J., Liu, S., Qin, M., Jia, T., Zhao, J., … Cao, Y. (2019). Understanding of Imine Substitution in Wide-Bandgap Polymer Donor-Induced Efficiency Enhancement in All-Polymer Solar Cells. Chemistry of Materials, 31(20), 8533–8542. doi:10.1021/acs.chemmater.9b03570
    Sponsors
    The authors thank Dawei Wang (Sun Yat-Sen University),Yuexing Zhang (Hubei University), Xin Song (King Abdullah University of Science & Technology (KAUST)), Lingling Shui (SCNU), Jinwei Gao (SCNU), and Wei Wei (SCNU) for help in XRD, DFT calculation, PESA, contact angle, thin film thickness, and PL measurements, respectively. The authors thank SCNU Analysis & Testing Center for technical support.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/acs.chemmater.9b03570
    Additional Links
    https://pubs.acs.org/doi/10.1021/acs.chemmater.9b03570
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.chemmater.9b03570
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.