Exact topological inference of the resting-state brain networks in twins
Type
ArticleKAUST Department
Biostatistics GroupComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Statistics Program
Date
2019-04-24Online Publication Date
2019-04-24Print Publication Date
2019-01Submitted Date
2018-08-24Permanent link to this record
http://hdl.handle.net/10754/661317
Metadata
Show full item recordAbstract
A cycle in a brain network is a subset of a connected component with redundant additional connections. If there are many cycles in a connected component, the connected component is more densely connected. Whereas the number of connected components represents the integration of the brain network, the number of cycles represents how strong the integration is. However, it is unclear how to perform statistical inference on the number of cycles in the brain network. In this study, we present a new statistical inference framework for determining the significance of the number of cycles through the Kolmogorov-Smirnov (KS) distance, which was recently introduced to measure the similarity between networks across different filtration values by using the zeroth Betti number. In this paper, we show how to extend the method to the first Betti number, which measures the number of cycles. The performance analysis was conducted using the random network simulations with ground truths. By using a twin imaging study, which provides biological ground truth, the methods are applied in determining if the number of cycles is a statistically significant heritable network feature in the resting-state functional connectivity in 217 twins obtained from the Human Connectome Project. The MATLAB codes as well as the connectivity matrices used in generating results are provided at http://www.stat.wisc.edu/~mchung/TDA.Citation
Chung, M. K., Lee, H., DiChristofano, A., Ombao, H., & Solo, V. (2019). Exact topological inference of the resting-state brain networks in twins. Network Neuroscience, 3(3), 674–694. doi:10.1162/netn_a_00091Sponsors
Moo Chung, National Institutes of Health (http://dx.doi.org/10.13039/100000002), Award ID: EB022856. Hyekyoung Lee, National Research Foundation of Korea (http://dx.doi.org/10.13039/501100003725), Award ID: NRF-2016R1D1A1B03935463.Publisher
MIT Press - JournalsJournal
Network NeuroscienceAdditional Links
https://www.mitpressjournals.org/doi/abs/10.1162/netn_a_00091ae974a485f413a2113503eed53cd6c53
10.1162/netn_a_00091
Scopus Count
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.