Show simple item record

dc.contributor.authorJeong, Jaehong
dc.contributor.authorYan, Yuan
dc.contributor.authorCastruccio, Stefano
dc.contributor.authorGenton, Marc G.
dc.date.accessioned2020-01-16T12:52:02Z
dc.date.available2020-01-16T12:52:02Z
dc.date.issued2018-10-09
dc.identifier.citationJeong, J., Yan, Y., Castruccio, S., & Genton, M. G. (2019). A Stochastic Generator of Global Monthly Wind Energy with Tukey g-and-h Autoregressive Processes. Statistica Sinica. doi:10.5705/ss.202017.0474
dc.identifier.doi10.5705/ss.202017.0474
dc.identifier.urihttp://hdl.handle.net/10754/661059
dc.description.abstractQuantifying the uncertainty of wind energy potential from climate models is a time-consuming task and requires considerable computational resources. A statistical model trained on a small set of runs can act as a stochastic approximation of the original climate model, and can assess the uncertainty considerably faster than by resorting to the original climate model for additional runs. While Gaussian models have been widely employed as means to approximate climate simulations, the Gaussianity assumption is not suitable for winds at policy-relevant (i.e., subannual) time scales. We propose a trans-Gaussian model for monthly wind speed that relies on an autoregressive structure with a Tukey g-and-h transformation, a flexible new class that can separately model skewness and tail behavior. This temporal structure is integrated into a multi-step spectral framework that can account for global nonstationarities across land/ocean boundaries, as well as across mountain ranges. Inferences are achieved by balancing memory storage and distributed computation for a big data set of 220 million points. Once the statistical model was fitted using as few as five runs, it can generate surrogates rapidly and efficiently on a simple laptop. Furthermore, it provides uncertainty assessments very close to those obtained from all available climate simulations (40) on a monthly scale.
dc.description.sponsorshipThis publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2015-CRG4-2640.
dc.publisherStatistica Sinica (Institute of Statistical Science)
dc.relation.urlhttp://www3.stat.sinica.edu.tw/statistica/J29N3/J29N32/J29N32.html
dc.rightsArchived with thanks to Statistica Sinica
dc.titleA Stochastic Generator of Global Monthly Wind Energy with Tukey g-and-h Autoregressive Processes
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentSpatio-Temporal Statistics and Data Analysis Group
dc.contributor.departmentStatistics Program
dc.identifier.journalStatistica Sinica
dc.rights.embargodate2019-10-09
dc.eprint.versionPost-print
dc.contributor.institutionUniversity of Maine.
dc.contributor.institutionUniversity of Notre Dame.
dc.identifier.arxivid1711.03930
kaust.personYan, Yuan
kaust.personGenton, Marc G.
kaust.grant.numberOSR-2015-CRG4-2640
dc.date.accepted2019
refterms.dateFOA2020-01-16T12:52:51Z
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)
dc.date.published-print2019


Files in this item

Thumbnail
Name:
A29n32.pdf
Size:
6.805Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record